the biology of
CANCER
SECOND EDITION
Robert A. Weinberg
Contents

Chapter 1: The Biology and Genetics of Cells and Organisms 1
Chapter 2: The Nature of Cancer 31
Chapter 3: Tumor Viruses 71
Chapter 4: Cellular Oncogenes 103
Chapter 5: Growth Factors, Receptors, and Cancer 131
Chapter 6: Cytoplasmic Signaling Circuitry Programs Many of the Traits of Cancer 175
Chapter 7: Tumor Suppressor Genes 231
Chapter 8: pRb and Control of the Cell Cycle Clock 275
Chapter 9: p53 and Apoptosis: Master Guardian and Executioner 331
Chapter 10: Eternal Life: Cell Immortalization and Tumorigenesis 391
Chapter 11: Multi-Step Tumorigenesis 439
Chapter 12: Maintenance of Genomic Integrity and the Development of Cancer 511
Chapter 13: Dialogue Replaces Monologue: Heterotypic Interactions and the Biology of Angiogenesis 577
Chapter 14: Moving Out: Invasion and Metastasis 641
Chapter 15: Crowd Control: Tumor Immunology and Immunotherapy 723
Chapter 16: The Rational Treatment of Cancer 797

Abbreviations A:1
Glossary G:1
Index I:1
List of Key Techniques

Apoptotic cells: Various detection techniques (Figure 9.19)
Apoptotic cells: Detection by the TUNEL assay (Supplementary Sidebar 9.2)
Chromatin immunoprecipitation (Supplementary Sidebar 8.3)
Circulating tumor cells: Detection using microfluidic devices (Supplementary Sidebar 14.3)
Comparative genomic hybridization (CGH) (Supplementary Sidebar 11.4)
DNA sequence polymorphisms: Detection by polymerase chain reaction (Supplementary Sidebar 7.3)
Embryonic stem cells: Derivation of pluripotent mouse cell lines (Supplementary Sidebar 8.1)
Fluorescence-activated cell sorting (FACS) (Supplementary Sidebar 11.1)
Gene cloning strategies (Supplementary Sidebar 1.5)
Gene cloning: Isolation of genes encoding melanoma antigens (Supplementary Sidebar 15.1)
Gene cloning: Isolation of transfected human oncogenes (Figure 4.7)
Gene knock-in and knock-out: Homologous recombination with mouse germ-line genes (Supplementary Sidebar 7.7)
Histopathological staining techniques (Supplementary Sidebar 2.1)
Knocking down gene expression with shRNAs and siRNAs (Supplementary Sidebar 1.4)
Laser-capture microdissection (Supplementary Sidebar 13.5)
Mapping of DNA methylation sites: Use of sequence-specific polymerase chain reaction (Supplementary Sidebar 7.4)
Mapping of an oncogene-activating mutation (Figure 4.8)
Mapping of tumor suppressor genes via restriction fragment length polymorphisms (Figure 7.13)
Monoclonal antibodies (Supplementary Sidebar 11.1)
Mutagenicity measurement: The Ames test (Figure 2.27)
Probe construction: The src-specific DNA probe (Figure 3.20)
Reproductive cloning (Supplementary Sidebar 1.2)
Retroviral vector construction (Supplementary Sidebar 3.3)
Screening for mutant oncoproteins (Figure 16.25)
Skin carcinoma induction in mice (Figure 11.30)
Southern and Northern blotting (Supplementary Sidebar 4.3)
Telomerase activity measurements: The TRAP assay (Supplementary Sidebar 10.1)
Transfection of DNA (Figure 4.1)
Transgenic mice: Creating tumor-prone strains (Figure 9.23)

Can be found on the DVD-ROM accompanying the book.
Detailed Contents

Chapter 1: The Biology and Genetics of Cells and Organisms

1.1 Mendel establishes the basic rules of genetics 1
1.2 Mendelian genetics helps to explain Darwinian evolution 2
1.3 Mendelian genetics governs how both genes and chromosomes behave 4
1.4 Chromosomes are altered in most types of cancer cells 7
1.5 Mutations causing cancer occur in both the germ line and the soma 10
1.6 Genotype embodied in DNA sequences creates phenotype through proteins 11
1.7 Gene expression patterns also control phenotype 14
1.8 Histone modification and transcription factors control gene expression 19
1.9 Heritable gene expression is controlled through additional mechanisms 21
1.10 Unconventional RNA molecules also affect the expression of genes 24
1.11 Metazoa are formed from components conserved over vast evolutionary time periods 25
1.12 Gene cloning techniques revolutionized the study of normal and malignant cells 27
Additional reading 28

Chapter 2: The Nature of Cancer

2.1 Tumors arise from normal tissues 31
2.2 Tumors arise from many specialized cell types throughout the body 32
2.3 Some types of tumors do not fit into the major classifications 34
2.4 Cancers seem to develop progressively 40
2.5 Tumors are monoclonal growths 45
2.6 Cancer cells exhibit an altered energy metabolism 50
2.7 Cancers occur with vastly different frequencies in different human populations 53
2.8 The risks of cancers often seem to be increased by assignable influences including lifestyle 55
2.9 Specific chemical agents can induce cancer 58
2.10 Both physical and chemical carcinogens act as mutagens 59
2.11 Mutagens may be responsible for some human cancers 60
2.12 Synopsis and prospects 64
Key concepts 66
Thought questions 68
Additional reading 69

Chapter 3: Tumor Viruses

3.1 Peyton Rous discovers a chicken sarcoma virus 71
3.2 Rous sarcoma virus is discovered to transform infected cells in culture 72
3.3 The continued presence of RSV is needed to maintain transformation 75
3.4 Viruses containing DNA molecules are also able to induce cancer 77
3.5 Tumor viruses induce multiple changes in cell phenotype including acquisition of tumorigenicity 82
3.6 Tumor virus genomes persist in virus-transformed cells by becoming part of host-cell DNA 83
3.7 Retroviral genomes become integrated into the chromosomes of infected cells 87
3.8 A version of the src gene carried by RSV is also present in uninfected cells 89
3.9 RSV exploits a kidnapped cellular gene to transform cells 91
3.10 The vertebrate genome carries a large group of proto-oncogenes 93
3.11 Slowly transforming retroviruses activate proto-oncogenes by inserting their genomes adjacent to these cellular genes 94
3.12 Some retroviruses naturally carry oncogenes 97
3.13 Synopsis and prospects 99
Key concepts 101
Thought questions 102
Additional reading 102

Chapter 4: Cellular Oncogenes

4.1 Can cancers be triggered by the activation of endogenous retroviruses? 103
4.2 Transfection of DNA provides a strategy for detecting nonviral oncogenes 104
4.3 Oncogenes discovered in human tumor cell lines are related to those carried by transforming retroviruses 108
4.4 Proto-oncogenes can be activated by genetic changes affecting either protein expression or structure 113
4.5 Variations on a theme: the src oncogene can arise via at least three additional distinct mechanisms 117
4.6 A diverse array of structural changes in proteins can also lead to oncogene activation 124
4.7 Synopsis and prospects 127
Key concepts 128
Thought questions 130
Additional reading 130

Chapter 5: Growth Factors, Receptors, and Cancer

5.1 Normal metazoan cells control each other's lives 131
5.2 The Src protein functions as a tyrosine kinase 133
5.3 The EGF receptor functions as a tyrosine kinase 135
5.4 An altered growth factor receptor can function as an oncoprotein 138
5.5 A growth factor gene can become an oncogene: the case of sis 141
5.6 Transphosphorylation underlies the operations of receptor tyrosine kinases 144
5.7 Yet other types of receptors enable mammalian cells to communicate with their environment 146
5.8 Nuclear receptors sense the presence of low-molecular-weight lipophilic ligands 153
5.9 Integrin receptors sense association between the cell and the extracellular matrix 159

xvii
Chapter 6: Cytoplasmic Signaling Circuitry Programs
Many of the Traits of Cancer

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>A signaling pathway reaches from the cell surface into the nucleus</td>
<td>177</td>
</tr>
<tr>
<td>6.2</td>
<td>The Ras protein stands in the middle of a complex signaling cascade</td>
<td>180</td>
</tr>
<tr>
<td>6.3</td>
<td>Tyrosine phosphorylation controls the location and thereby the actions of many cytoplasmic signaling proteins</td>
<td>182</td>
</tr>
<tr>
<td>6.4</td>
<td>SH2 and SH3 groups explain how growth factor receptors activate Ras and acquire signaling specificity</td>
<td>188</td>
</tr>
<tr>
<td>6.5</td>
<td>Ras-regulated signaling pathways: A cascade of kinases forms one of three important signaling pathways downstream of Ras</td>
<td>189</td>
</tr>
<tr>
<td>6.6</td>
<td>Ras-regulated signaling pathways: a second downstream pathway controls inositol lipids and the Akt/PKB kinase</td>
<td>193</td>
</tr>
<tr>
<td>6.7</td>
<td>Ras-regulated signaling pathways: a third downstream pathway acts through Ral, a distant cousin of Ras</td>
<td>201</td>
</tr>
<tr>
<td>6.8</td>
<td>The Jak-STAT pathway allows signals to be transmitted from the plasma membrane directly to the nucleus</td>
<td>202</td>
</tr>
<tr>
<td>6.9</td>
<td>Cell adhesion receptors emit signals that converge with those released by growth factor receptors</td>
<td>204</td>
</tr>
<tr>
<td>6.10</td>
<td>The Wnt-β-catenin pathway contributes to cell proliferation</td>
<td>206</td>
</tr>
<tr>
<td>6.11</td>
<td>G-protein-coupled receptors can also drive normal and neoplastic proliferation</td>
<td>209</td>
</tr>
<tr>
<td>6.12</td>
<td>Four additional "dual-address" signaling pathways contribute in various ways to normal and neoplastic proliferation</td>
<td>212</td>
</tr>
<tr>
<td>6.13</td>
<td>Well-designed signaling circuits require both negative and positive feedback controls</td>
<td>216</td>
</tr>
<tr>
<td>6.14</td>
<td>Synopsis and prospects</td>
<td>217</td>
</tr>
</tbody>
</table>

Chapter 7: Tumor Suppressor Genes
Cell fusion experiments indicate that the cancer phenotype is recessive

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>The Ras protein, an apparent component of the downstream signaling cascade, functions as a G protein</td>
<td>165</td>
</tr>
<tr>
<td>7.2</td>
<td>The recessive nature of the cancer cell phenotype requires a genetic explanation</td>
<td>169</td>
</tr>
<tr>
<td>7.3</td>
<td>The retinoblastoma tumor provides a solution to the genetic puzzle of tumor suppressor genes</td>
<td>172</td>
</tr>
<tr>
<td>7.4</td>
<td>Incipient cancer cells invent ways to eliminate wild-type copies of tumor suppressor genes</td>
<td>174</td>
</tr>
<tr>
<td>7.5</td>
<td>The Rb gene often undergoes loss of heterozygosity in tumors</td>
<td>174</td>
</tr>
<tr>
<td>7.6</td>
<td>Loss-of-heterozygosity events can be used to find tumor suppressor genes</td>
<td>174</td>
</tr>
<tr>
<td>7.7</td>
<td>Many familial cancers can be explained by inheritance of mutant tumor suppressor genes</td>
<td>174</td>
</tr>
<tr>
<td>7.8</td>
<td>Promoter methylation represents an important mechanism for inactivating tumor suppressor genes</td>
<td>174</td>
</tr>
<tr>
<td>7.9</td>
<td>Tumor suppressor genes and proteins function in diverse ways</td>
<td>174</td>
</tr>
<tr>
<td>7.10</td>
<td>The NFI protein acts as a negative regulator of Ras signaling</td>
<td>174</td>
</tr>
</tbody>
</table>

Chapter 8: pRb and Control of the Cell Cycle Clock
Cell growth and division is coordinated by a complex array of regulators

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Cell growth and division is coordinated by a complex array of regulators</td>
<td>276</td>
</tr>
<tr>
<td>8.2</td>
<td>Cells make decisions about growth and quiescence during a specific period in the G1 phase</td>
<td>281</td>
</tr>
<tr>
<td>8.3</td>
<td>Cyclins and cyclin-dependent kinases constitute the core components of the cell cycle clock</td>
<td>283</td>
</tr>
<tr>
<td>8.4</td>
<td>Cyclin–CDK complexes are also regulated by CDK inhibitors</td>
<td>288</td>
</tr>
<tr>
<td>8.5</td>
<td>Viral oncoproteins reveal how pRb blocks advance through the cell cycle</td>
<td>294</td>
</tr>
<tr>
<td>8.6</td>
<td>pRb is deployed by the cell cycle clock to serve as a guardian of the restriction-point gate</td>
<td>298</td>
</tr>
<tr>
<td>8.7</td>
<td>E2F transcription factors enable pRb to implement growth-versus-quiescence decisions</td>
<td>299</td>
</tr>
<tr>
<td>8.8</td>
<td>A variety of mitogenic signaling pathways control the phosphorylation state of pRb</td>
<td>304</td>
</tr>
<tr>
<td>8.9</td>
<td>The Myc protein governs decisions to proliferate or differentiate</td>
<td>306</td>
</tr>
<tr>
<td>8.10</td>
<td>TGF-β prevents phosphorylation of pRb and thereby blocks cell cycle progression</td>
<td>311</td>
</tr>
<tr>
<td>8.11</td>
<td>pRb function and the controls of differentiation are closely linked</td>
<td>314</td>
</tr>
<tr>
<td>8.12</td>
<td>Control of pRb function is perturbed in most if not all human cancers</td>
<td>318</td>
</tr>
<tr>
<td>8.13</td>
<td>Synopsis and prospects</td>
<td>323</td>
</tr>
<tr>
<td>8.14</td>
<td>Key concepts</td>
<td>327</td>
</tr>
<tr>
<td>8.15</td>
<td>Thought questions</td>
<td>328</td>
</tr>
<tr>
<td>8.16</td>
<td>Additional reading</td>
<td>329</td>
</tr>
</tbody>
</table>

Chapter 9: p53 and Apoptosis: Master Guardian and Executioner
Papolaviruses lead to the discovery of p53

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Papovaviruses lead to the discovery of p53</td>
<td>332</td>
</tr>
<tr>
<td>9.2</td>
<td>p53 is discovered to be a tumor suppressor gene</td>
<td>334</td>
</tr>
<tr>
<td>9.3</td>
<td>Mutant versions of p53 interfere with normal p53 function</td>
<td>335</td>
</tr>
<tr>
<td>9.4</td>
<td>p53 protein molecules usually have short lifetimes</td>
<td>338</td>
</tr>
<tr>
<td>9.5</td>
<td>A variety of signals cause p53 induction</td>
<td>339</td>
</tr>
<tr>
<td>9.6</td>
<td>DNA damage and deregulated growth signals cause p53 stabilization</td>
<td>341</td>
</tr>
<tr>
<td>9.7</td>
<td>Mdm2 destroys its own creator</td>
<td>342</td>
</tr>
<tr>
<td>9.8</td>
<td>ARF and p53-mediated apoptosis protect against cancer by monitoring intracellular signaling</td>
<td>348</td>
</tr>
<tr>
<td>9.9</td>
<td>p53 functions as a transcription factor that halts cell cycle advance in response to DNA damage and attempts to aid in the repair process</td>
<td>352</td>
</tr>
<tr>
<td>9.10</td>
<td>p53 often usher in the apoptotic death program</td>
<td>355</td>
</tr>
<tr>
<td>9.11</td>
<td>p53 inactivation provides advantage to incipient cancer cells at a number of steps in tumor progression</td>
<td>359</td>
</tr>
<tr>
<td>9.12</td>
<td>Inherited mutant alleles affecting the p53 pathway predispose one to a variety of tumors</td>
<td>360</td>
</tr>
<tr>
<td>9.13</td>
<td>Apoptosis is a complex program that often depends on mitochondria</td>
<td>361</td>
</tr>
<tr>
<td>9.14</td>
<td>Both intrinsic and extrinsic apoptotic programs can lead to cell death</td>
<td>371</td>
</tr>
<tr>
<td>9.15</td>
<td>Cancer cells invent numerous ways to inactivate some or all of the apoptotic machinery</td>
<td>376</td>
</tr>
<tr>
<td>9.16</td>
<td>Necrosis and autophagy: two additional forks in the road of tumor progression</td>
<td>379</td>
</tr>
</tbody>
</table>
9.17 Synopsis and prospects
Key concepts
Thought questions
Additional reading

Chapter 10: Eternal Life: Cell Immortalization and Tumorigenesis
10.1 Normal cell populations register the number of cell generations separating them from their ancestors in the early embryo
10.2 Cancer cells need to become immortal in order to form tumors
10.3 Cell-physiologic stresses impose a limitation on replication
10.4 The proliferation of cultured cells is also limited by the telomeres of their chromosomes
10.5 Telomeres are complex molecular structures that are not easily replicated
10.6 Incipient cancer cells can escape crisis by expressing telomerase
10.7 Telomerase plays a key role in the proliferation of human cancer cells
10.8 Some immortalized cells can maintain telomeres without telomerases
10.9 Telomeres play different roles in the cells of laboratory mice and in human cells
10.10 Telomerase-negative mice show both decreased and increased cancer susceptibility
10.11 The mechanisms underlying cancer pathogenesis in telomerase-negative mice may also operate during the development of human tumors
10.12 Synopsis and prospects
Key concepts
Thought questions
Additional reading

Chapter 11: Multi-Step Tumorigenesis
11.1 Most human cancers develop over many decades of time
11.2 Histopathology provides evidence of multi-step tumor formation
11.3 Cells accumulate genetic and epigenetic alterations as tumor progression proceeds
11.4 Multi-step tumor progression helps to explain familial polyposis and field cancerization
11.5 Cancer development seems to follow the rules of Darwinian evolution
11.6 Tumor stem cells further complicate the Darwinian model of clonal succession and tumor progression
11.7 A linear path of clonal succession oversimplifies the reality of cancer: intra-tumor heterogeneity
11.8 The Darwinian model of tumor development is difficult to validate experimentally
11.9 Multiple lines of evidence reveal that normal cells are resistant to transformation by a single mutated gene
11.10 Transformation usually requires collaboration between two or more mutant genes
11.11 Transgenic mice provide models of oncogene collaboration and multi-step cell transformation
11.12 Human cells are constructed to be highly resistant to immortalization and transformation
11.13 Nonmutagenic agents, including those favoring cell proliferation, make important contributions to tumorigenesis
11.14 Toxic and mitogenic agents can act as human tumor promoters

Chapter 12: Maintenance of Genomic Integrity and the Development of Cancer
12.1 Tissues are organized to minimize the progressive accumulation of mutations
12.2 Stem cells may or may not be targets of the mutagenesis that leads to cancer
12.3 Apoptosis, drug pumps, and DNA replication mechanisms offer tissues a way to minimize the accumulation of mutant stem cells
12.4 Cell genomes are threatened by errors made during DNA replication
12.5 Cell genomes are under constant attack from endogenous biochemical processes
12.6 Cell genomes are under occasional attack from exogenous mutagens and their metabolites
12.7 Cells deploy a variety of defenses to protect DNA molecules from attack by mutagens
12.8 Repair enzymes fix DNA that has been altered by mutagens
12.9 Inherited defects in nucleotide-excision repair, base-excision repair, and mismatch repair lead to specific cancer susceptibility syndromes
12.10 A variety of other DNA repair defects confer increased cancer susceptibility through poorly understood mechanisms
12.11 The karyotype of cancer cells is often changed through alterations in chromosome structure
12.12 The karyotype of cancer cells is often changed through alterations in chromosome number
12.13 Synopsis and prospects
Key concepts
Thought questions
Additional reading

Chapter 13 Dialogue Replaces Monologue: Heterotypic Interactions and the Biology of Angiogenesis
13.1 Normal and neoplastic epithelial tissues are formed from interdependent cell types
13.2 The cells forming cancer cell lines develop without heterotypic interactions and deviate from the behavior of cells within human tumors
13.3 Tumors resemble wounded tissues that do not heal
13.4 Experiments directly demonstrate that stromal cells are active contributors to tumorigenesis
13.5 Macrophages and myeloid cells play important roles in activating the tumor-associated stroma
13.6 Endothelial cells and the vessels that they form ensure tumors adequate access to the circulation
13.7 Tripping the angiogenic switch is essential for tumor expansion
13.8 The angiogenic switch initiates a highly complex process
13.9 Angiogenesis is normally suppressed by physiologic inhibitors
13.10 Anti-angiogenesis therapies can be employed to treat cancer
Chapter 15: Crowd Control: Tumor Immunology

15.1 The immune system functions to destroy foreign invaders and abnormal cells in the body's tissues.
15.2 The adaptive immune response leads to antibody production.
15.3 Another adaptive immune response leads to the formation of cytotoxic cells.
15.4 The innate immune response does not require prior sensitization.
15.5 The need to distinguish self from non-self results in immune tolerance.
15.6 Regulatory T cells are able to suppress major components of the adaptive immune response.
15.7 The immunosurveillance theory is born and then suffers major setbacks.
15.8 Use of genetically altered mice leads to a resurrection of the immunosurveillance theory.
15.9 The human immune system plays a critical role in warding off various types of human cancer.
15.10 Subtle differences between normal and neoplastic tissues may allow the immune system to distinguish between them.
15.11 Tumor transplantation antigens often provoke potent immune responses.
15.12 Tumor-associated transplantation antigens may also evoke anti-tumor immunity.
15.13 Cancer cells can evade immune detection by suppressing cell-surface display of tumor antigens.
15.14 Cancer cells protect themselves from destruction by NK cells and macrophages.
15.15 Tumor cells launch counterattacks on immunocytes.
15.16 Cancer cells become intrinsically resistant to various forms of killing used by the immune system.
15.17 Cancer cells attract regulatory T cells to fend off attacks by other lymphocytes.
15.18 Passive immunization with monoclonal antibodies can be used to kill breast cancer cells.
15.19 Passive immunization with antibody can also be used to treat B-cell tumors.
15.20 Transfer of foreign immunocytes can lead to cures of certain hematopoietic malignancies.
15.21 Patients' immune systems can be mobilized to attack their tumors.
15.22 Synopsis and prospects.

Chapter 16: The Rational Treatment of Cancer

16.1 The development and clinical use of effective therapies will depend on accurate diagnosis of disease.
16.2 Surgery, radiotherapy, and chemotherapy are the major pillars on which current cancer therapies rest.
16.3 Differentiation, apoptosis, and cell cycle checkpoints can be exploited to kill cancer cells.
16.4 Functional considerations dictate that only a subset of the defective proteins in cancer cells are attractive targets for drug development.
16.5 The biochemistry of proteins also determines whether they are attractive targets for intervention.
16.6 Pharmaceutical chemists can generate and explore the biochemical properties of a wide array of potential drugs.
16.7 Drug candidates must be tested on cell models as an initial measurement of their utility in whole organisms.
16.8 Studies of a drug's action in laboratory animals are an essential part of pre-clinical testing.
16.9 Promising candidate drugs are subjected to rigorous clinical tests in Phase I trials in humans.
16.10 Phase II and III trials provide credible indications of clinical efficacy.
16.11 Tumors often develop resistance to initially effective therapy.
16.12 Gleevec paved the way for the development of many other highly targeted compounds.
16.13 EGF receptor antagonists may be useful for treating a wide variety of tumor types.
16.14 Proteasome inhibitors yield unexpected therapeutic benefit.
16.15 A sheep teratogen may be useful as a highly potent anti-cancer drug.
16.16 mTOR, a master regulator of cell physiology, represents an attractive target for anti-cancer therapy.
16.17 B-Raf discoveries have led to inroads into the melanoma problem.
16.18 Synopsis and prospects: challenges and opportunities on the road ahead.

Key concepts
Thought questions
Additional reading