Principles and Techniques of Biochemistry and Molecular Biology

Seventh edition

Edited by KEITH WILSON AND JOHN WALKER

CAMBRIDGE UNIVERSITY PRESS
CONTENTS

Preface to the seventh edition
List of contributors
List of abbreviations

1 Basic principles

K. WILSON

1.1 Biochemical and molecular biology studies
1.2 Units of measurement
1.3 Weak electrolytes
1.4 Quantitative biochemical measurements
1.5 Safety in the laboratory
1.6 Suggestions for further reading

2 Cell culture techniques

A.R. BAYDOUN

2.1 Introduction
2.2 The cell culture laboratory and equipment
2.3 Safety considerations in cell culture
2.4 Aseptic techniques and good cell culture practice
2.5 Types of animal cell, characteristics and maintenance in culture
2.6 Stem cell culture
2.7 Bacterial cell culture
2.8 Potential use of cell cultures
2.9 Suggestions for further reading

3 Centrifugation

K. OHLENDIECK

3.1 Introduction
3.2 Basic principles of sedimentation
3.3 Types, care and safety aspects of centrifuges
3.4 Preparative centrifugation
3.5 Analytical centrifugation
3.6 Suggestions for further reading
4 Microscopy
 S. W. PADDOCK
 4.1 Introduction 100
 4.2 The light microscope 103
 4.3 Optical sectioning 116
 4.4 Imaging living cells and tissues 123
 4.5 Measuring cellular dynamics 126
 4.6 The electron microscope (EM) 129
 4.7 Image archiving 133
 4.8 Suggestions for further reading 136

5 Molecular biology, bioinformatics and basic techniques
 R. RAPLEY
 5.1 Introduction 138
 5.2 Structure of nucleic acids 139
 5.3 Genes and genome complexity 145
 5.4 Location and packaging of nucleic acids 149
 5.5 Functions of nucleic acids 152
 5.6 The manipulation of nucleic acids – basic tools and techniques 162
 5.7 Isolation and separation of nucleic acids 164
 5.8 Molecular biology and bioinformatics 170
 5.9 Molecular analysis of nucleic acid sequences 171
 5.10 The polymerase chain reaction (PCR) 178
 5.11 Nucleotide sequencing of DNA 187
 5.12 Suggestions for further reading 194

6 Recombinant DNA and genetic analysis
 R. RAPLEY
 6.1 Introduction 195
 6.2 Constructing gene libraries 196
 6.3 Cloning vectors 206
 6.4 Hybridisation and gene probes 223
 6.5 Screening gene libraries 225
 6.6 Applications of gene cloning 229
 6.7 Expression of foreign genes 234
 6.8 Analysing genes and gene expression 240
 6.9 Analysing whole genomes 254
 6.10 Pharmacogenomics 259
 6.11 Molecular biotechnology and applications 260
 6.12 Suggestions for further reading 262

7 Immunochemical techniques
 R. BURNS
 7.1 Introduction 263
 7.2 Making antibodies 273

8 Protein and gene analysis
 J. W. MCLEOD
 8.1 Ionic structure 195
 8.2 Protein structure 196
 8.3 Protein structure 206
 8.4 Protein structure 223
 8.5 Protein structure 225
 8.6 Suggestions for further reading 229

9 Mass spectrometry
 A. A. ALFRED
 9.1 Introduction 263
 9.2 Mass spectrometry 273
 9.3 Mass spectrometry 283
 9.4 Mass spectrometry 294
 9.5 Mass spectrometry 304
 9.6 Mass spectrometry 314
 9.7 Mass spectrometry 324
 9.8 Suggestions for further reading 334

10 Elecromyography
 J. W. MCLEOD
 10.1 Electromyography 263
 10.2 Electromyography 273
 10.3 Electromyography 283
 10.4 Electromyography 294
 10.5 Electromyography 304
 10.6 Electromyography 314
 10.7 Electromyography 324
 10.8 Suggestions for further reading 334
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Immunoassay formats</td>
<td>283</td>
</tr>
<tr>
<td>7.4</td>
<td>Immuno microscopy</td>
<td>291</td>
</tr>
<tr>
<td>7.5</td>
<td>Lateral flow devices</td>
<td>291</td>
</tr>
<tr>
<td>7.6</td>
<td>Epitope mapping</td>
<td>292</td>
</tr>
<tr>
<td>7.7</td>
<td>Immunoblotting</td>
<td>293</td>
</tr>
<tr>
<td>7.8</td>
<td>Fluorescent activated cell sorting (FACS)</td>
<td>293</td>
</tr>
<tr>
<td>7.9</td>
<td>Cell and tissue staining techniques</td>
<td>294</td>
</tr>
<tr>
<td>7.10</td>
<td>Immunocapture polymerase chain reaction (PCR)</td>
<td>295</td>
</tr>
<tr>
<td>7.11</td>
<td>Immunoaffinity chromatography (IAC)</td>
<td>295</td>
</tr>
<tr>
<td>7.12</td>
<td>Antibody-based biosensors</td>
<td>296</td>
</tr>
<tr>
<td>7.13</td>
<td>Therapeutic antibodies</td>
<td>297</td>
</tr>
<tr>
<td>7.14</td>
<td>The future uses of antibody technology</td>
<td>299</td>
</tr>
<tr>
<td>7.15</td>
<td>Suggestions for further reading</td>
<td>299</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Protein structure, purification, characterisation and function analysis</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Ionic properties of amino acids and proteins</td>
<td>300</td>
</tr>
<tr>
<td>8.2</td>
<td>Protein structure</td>
<td>304</td>
</tr>
<tr>
<td>8.3</td>
<td>Protein purification</td>
<td>307</td>
</tr>
<tr>
<td>8.4</td>
<td>Protein structure determination</td>
<td>328</td>
</tr>
<tr>
<td>8.5</td>
<td>Proteomics and protein function</td>
<td>340</td>
</tr>
<tr>
<td>8.6</td>
<td>Suggestions for further reading</td>
<td>351</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Mass spectrometric techniques</th>
<th>352</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>352</td>
</tr>
<tr>
<td>9.2</td>
<td>Ionisation</td>
<td>354</td>
</tr>
<tr>
<td>9.3</td>
<td>Mass analysers</td>
<td>359</td>
</tr>
<tr>
<td>9.4</td>
<td>Detectors</td>
<td>377</td>
</tr>
<tr>
<td>9.5</td>
<td>Structural information by tandem mass spectrometry</td>
<td>379</td>
</tr>
<tr>
<td>9.6</td>
<td>Analysing protein complexes</td>
<td>390</td>
</tr>
<tr>
<td>9.7</td>
<td>Computing and database analysis</td>
<td>394</td>
</tr>
<tr>
<td>9.8</td>
<td>Suggestions for further reading</td>
<td>397</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Electrophoretic techniques</th>
<th>399</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>General principles</td>
<td>399</td>
</tr>
<tr>
<td>10.2</td>
<td>Support media</td>
<td>403</td>
</tr>
<tr>
<td>10.3</td>
<td>Electrophoresis of proteins</td>
<td>407</td>
</tr>
<tr>
<td>10.4</td>
<td>Electrophoresis of nucleic acids</td>
<td>422</td>
</tr>
<tr>
<td>10.5</td>
<td>Capillary electrophoresis</td>
<td>427</td>
</tr>
<tr>
<td>10.6</td>
<td>Microchip electrophoresis</td>
<td>431</td>
</tr>
<tr>
<td>10.7</td>
<td>Suggestions for further reading</td>
<td>432</td>
</tr>
</tbody>
</table>
11 Chromatographic techniques
K. Wilson

11.1 Principles of chromatography 433
11.2 Chromatographic performance parameters 435
11.3 High-performance liquid chromatography 446
11.4 Adsorption chromatography 453
11.5 Partition chromatography 455
11.6 Ion-exchange chromatography 459
11.7 Molecular (size) exclusion chromatography 462
11.8 Affinity chromatography 465
11.9 Gas chromatography 470
11.10 Suggestions for further reading 476

12 Spectroscopic techniques: I Spectrophotometric techniques
A. Hofmann

12.1 Introduction 477
12.2 Ultraviolet and visible light spectroscopy 482
12.3 Fluorescence spectroscopy 493
12.4 Luminometry 507
12.5 Circular dichroism spectroscopy 509
12.6 Light scattering 514
12.7 Atomic spectroscopy 516
12.8 Suggestions for further reading 519

13 Spectroscopic techniques: II Structure and interactions
A. Hofmann

13.1 Introduction 522
13.2 Infrared and Raman spectroscopy 523
13.3 Surface plasmon resonance 527
13.4 Electron paramagnetic resonance 530
13.5 Nuclear magnetic resonance 536
13.6 X-ray diffraction 546
13.7 Small-angle scattering 549
13.8 Suggestions for further reading 551

14 Radioisotope techniques
R.J. Slater

14.1 Why use a radioisotope? 553
14.2 The nature of radioactivity 554
14.3 Detection and measurement of radioactivity 561
14.4 Other practical aspects of counting of radioactivity and analysis of data 573
14.5 Safety aspects 577
14.6 Suggestions for further reading 580
15 Enzymes
K. WILSON
15.1 Characteristics and nomenclature 581
15.2 Enzyme steady-state kinetics 584
15.3 Analytical methods for the study of enzyme reactions 602
15.4 Enzyme active sites and catalytic mechanisms 611
15.5 Control of enzyme activity 615
15.6 Suggestions for further reading 624

16 Principles of clinical biochemistry
J. FYFFE AND K. WILSON
16.1 Principles of clinical biochemical analysis 625
16.2 Clinical measurements and quality control 629
16.3 Examples of biochemical aids to clinical diagnosis 640
16.4 Suggestions for further reading 658
16.5 Acknowledgements 659

17 Cell membrane receptors and cell signalling
K. WILSON
17.1 Receptors for cell signalling 660
17.2 Quantitative aspects of receptor-ligand binding 663
17.3 Ligand-binding and cell-signalling studies 680
17.4 Mechanisms of signal transduction 685
17.5 Receptor trafficking 703
17.6 Suggestions for further reading 707

18 Drug discovery and development
K. WILSON
18.1 Human disease and drug therapy 709
18.2 Drug discovery 718
18.3 Drug development 727
18.4 Suggestions for further reading 734

Index
736

The colour figure section is between pages 128 and 129