Anatomy and Physiology
from Science to Life

Third Edition

International Student Version

Gail W. Jenkins
Montgomery College

Gerard J. Tortora
Bergen Community College

WILEY
John Wiley & Sons, Inc.
BRIEF CONTENTS

UNIT 1 PROLOGUE
1. An Introduction to the Human Body
2. The Chemical Level of Organization
3. The Cellular Level of Organization
4. The Tissue Level of Organization

UNIT 2 BODY SYSTEMS
5. The Integumentary System
6. Introduction to the Skeletal System
7. The Axial Skeleton
8. The Appendicular Skeleton
9. Articulations
10. Muscle Tissue
11. The Muscular System
12. Introduction to the Nervous System
13. The Central Nervous System
14. The Peripheral Nervous System
15. Sensory, Motor, and Integrative Systems
16. The Special Senses
17. The Endocrine System
18. The Cardiovascular System: The Blood
19. The Cardiovascular System: The Heart
20. The Cardiovascular System: Blood Vessels
21. The Lymphatic System and Immunity
22. The Respiratory System
23. The Digestive System
24. The Urinary System
25. The Reproductive Systems and Development

UNIT 3 EPILOGUE
- Appendix A Measurements
- Appendix B Periodic Table
- Appendix C Normal Values for Selected Blood Tests
- Appendix D Normal Values for Selected Urine Tests
- Appendix E Answers to Checkpoint Questions
- Credits
- Glossary
- Index
CONTENTS

1 AN INTRODUCTION TO THE HUMAN BODY 2

1.1 The human body is composed of six levels of structural organization and contains eleven systems. 4

1.2 The human body carries on basic life processes that distinguish it from nonliving objects. 9

1.3 Homeostasis is controlled through feedback systems. 11

1.4 The human body is described using the anatomical position and specific terms. 14

1.5 Body cavities are spaces within the body that help protect, separate, and support internal organs. 19

1.6 Serous membranes line the walls of body cavities and cover the organs within them. 22

1.7 The abdominopelvic cavity is divided into regions or quadrants. 22

Oliver’s Story: Epilogue and Discussion 24
Concept and Resource Summary 24
Understanding the Concepts 27

2 THE CHEMICAL LEVEL OF ORGANIZATION 28

2.1 Chemical elements are composed of small units called atoms. 30

2.2 Atoms are held together by chemical bonds. 33

2.3 Chemical reactions occur when atoms combine with or separate from other atoms. 36

2.4 Inorganic compounds include water, salts, acids, and bases. 39

2.5 Organic molecules are large carbon-based molecules that carry out complex functions in living systems. 42

2.6 Carbohydrates function as building blocks and sources of energy. 44
Monosaccharides and Disaccharides:
The Simple Sugars 44
Polysaccharides 44

2.7 Lipids are important for cell membrane structure, energy storage, and hormone production. 45
Fatty Acids 45
Triglycerides 46
Phospholipids 48
Steroids 48
Other Lipids 49

2.8 Proteins are amino acid complexes serving many diverse roles. 49
Amino Acids and Polypeptides 50
Levels of Structural Organization in Proteins 50
Enzymes 52

2.9 Nucleic acids contain genetic material and function in protein synthesis. 54

2.10 Adenosine triphosphate (ATP) is the principal energy-transferring molecule in living systems. 55

Michael's Story: Epilogue and Discussion 56
Concept and Resource Summary 56
Understanding the Concepts 61

THE CELLULAR LEVEL OF ORGANIZATION 62

Michael's Story 62
Introduction 63

4.1 The principal parts of a cell are the plasma membrane, the cytoplasm, and the nucleus. 64

4.2 The plasma membrane contains the cytoplasm and regulates exchanges with the extracellular environment. 65
The Lipid Bilayer 65
Arrangement of Membrane Proteins 66
Functions of Membrane Proteins 66
Membrane Fluidity 67
Membrane Permeability 67
Gradients across the Plasma Membrane 67

3.3 Transport of a substance across the plasma membrane occurs by both passive and active processes. 68
Passive Processes 68
Active Processes 72

3.4 Cytoplasm consists of the cytosol and organelles. 76
Cytosol 76
Organelles 78

3.5 The nucleus contains nucleoli and genes. 86

3.6 Cells make proteins by transcribing and translating the genetic information contained in DNA. 89
Transcription 90
Translation 90

3.7 Cell division allows the replacement of cells and the production of new cells. 93
Somatic Cell Division 93
Reproductive Cell Division 95

Michael's Story: Epilogue and Discussion 100
Concept and Resource Summary 100
Understanding the Concepts 105

4 THE TISSUE LEVEL OF ORGANIZATION 106

John Doe's Story 106
Introduction 107

4.1 Human body tissues can be classified as epithelial, connective, muscle, or nervous. 108

4.2 Cell junctions hold cells together to form tissues. 108

4.3 Epithelial tissue covers body surfaces, lines organs and body cavities, or secretes substances. 109
Covering and Lining Epithelium 110
Glandular Epithelium 116

4.4 Connective tissue binds organs together, stores energy reserves as fat, and helps provide immunity. 118
Connective Tissue Extracellular Matrix 118
Connective Tissue Cells 119
Types of Connective Tissue 119
4.5 Epithelial and connective tissues have obvious structural differences. 128

4.6 Membranes cover the surface of the body, line body cavities, and cover organs. 129
 Epithelial Membranes 129
 Synovial Membranes 131

4.7 Muscle tissue generates the physical force needed to make body structures move. 131

4.8 Nervous tissue consists of neurons and neuroglia. 133

4.9 The ability of an injured tissue to repair itself depends on the extent of damage and the regenerative ability of the injured tissue. 135

John Doe's Story: Epilogue and Discussion 136
Concept and Resource Summary 136
Understanding the Concepts 140

5 THE INTEGUMENTARY SYSTEM 142

Colin's Story 142
Introduction 143

5.1 Skin is composed of a superficial epidermis and a deeper dermis. 144

5.2 The layers of the epidermis include the stratum basale, stratum spinosum, stratum granulosum, stratum lucidum, and stratum corneum. 146
 Cells of the Epidermis 146
 Strata of the Epidermis 146
 Growth of the Epidermis 147

5.3 The dermis contains blood vessels, nerves, sensory receptors, hair follicles, and glands. 148

5.4 Skin color is a result of the pigments melanin, carotene, and hemoglobin. 149

5.5 The functions of hair, skin glands, and nails include protection and body temperature regulation. 150
 Hair 150
 Glands of the Skin 152
 Nails 154

5.6 The two major types of skin are thin skin and thick skin. 154

5.7 Skin regulates body temperature, protects underlying tissues, provides cutaneous sensations, excretes body wastes, and synthesizes vitamin D. 155
 Regulation of Body Temperature 155
 Blood Reservoir 155
 Protection 155
 Cutaneous Sensations 156
 Excretion and Absorption 156
 Synthesis of Vitamin D 156

5.8 Skin damage sets in motion a sequence of events that repairs the skin. 157
 Epidermal Wound Healing 157
 Deep Wound Healing 158

Colin's Story: Epilogue and Discussion 158
Concept and Resource Summary 159
Understanding the Concepts 161

6 INTRODUCTION TO THE SKELETAL SYSTEM 162

Jean's Story 162
Introduction 163

6.1 Skeletal system functions include support, protection, movement, mineral homeostasis, blood cell production, and energy storage. 164

6.2 Bones are classified as long, short, flat, irregular, or sesamoid. 164

6.3 Long bones have a diaphysis, a medullary cavity, epiphyses, metaphyses, and a periosteum. 165

6.4 Osseous tissue can be arranged as compact bone tissue or spongy bone tissue. 167
 Cells of Osseous Tissue 167
 Types of Osseous Tissue 168

6.5 Bones are richly supplied with blood vessels and nerves. 170

6.6 The two types of bone formation are intramembranous ossification and endochondral ossification. 171
 Intramembranous Ossification 172
 Endochondral Ossification 173
6.7 Bones grow longer at the epiphyseal plate and increase in diameter by the addition of new osseous tissue around the outer surface. 174
 Growth in Length 174
 Growth in Thickness 176
6.8 Bone remodeling renews osseous tissue, redistributes bone extracellular matrix, and repairs bone injuries. 176
6.9 Dietary and hormonal factors influence bone growth and remodeling. 177
Jean’s Story: Epilogue and Discussion 178
Concept and Resource Summary 179
Understanding the Concepts 181

7 THE AXIAL SKELETON 182
Fernando’s Story 182
Introduction 183
7.1 Bones of the axial skeleton and appendicular skeleton have characteristic surface markings. 184
7.2 The skull provides attachment sites for muscles and membranes, and protects and supports the brain and sense organs. 186
7.3 The cranial bones include the frontal, parietal, temporal, occipital, sphenoid, and ethmoid bones. 187
 Frontal Bone 187
 Parietal Bones 188
 Temporal Bones 188
 Occipital Bone 189
 Sphenoid Bone 190
 Ethmoid Bone 193
7.4 Facial bones include the nasal bones, maxillae, zygomatic bones, lacrimal bones, palatine bones, inferior nasal conchae, vomer, and mandible. 195
 Nasal Bones 195
 Maxillae 195
 Zygomatic Bones 196
 Lacrimal Bones 196
 Palatine Bones 196
Inferior Nasal Conchae 196
Vomer 196
Mandible 196
7.5 Unique features of the skull include the nasal septum, orbits, sutures, paranasal sinuses, and fontanels. 198
 Nasal Septum 198
 Orbits 198
 Paranasal Sinuses 199
 Sutures 199
 Fontanels 200
7.6 The hyoid bone supports the tongue and attaches to muscles of the tongue, pharynx, and larynx. 201
7.7 The vertebral column protects the spinal cord, supports the head, and is a point of attachment for bones and muscles. 202
 Normal Curves of the Vertebral Column 202
 Intervertebral Discs 202
7.8 A vertebra usually consists of a body, a vertebral arch, and several processes. 204
 Body 204
 Vertebral Arch 204
 Processes 204
7.9 Vertebrae in the different regions of the vertebral column vary in size, shape, and detail. 205
 Cervical Region 206
 Thoracic Region 207
 Lumbar Region 209
 Sacrum 209
 Coccyx 209
7.10 The thoracic cage protects vital organs in the thorax and upper abdomen and provides support for the bones of the upper limbs. 212
 Sternum 212
 Ribs 213
Fernando’s Story: Epilogue and Discussion 215
Concept and Resource Summary 216
Understanding the Concepts 219
8 THE APPENDICULAR SKELETON 220

Isoken's Story 220
Introduction 221

8.1 Each pectoral girdle, which consists of a clavicle and scapula, attaches an upper limb to the axial skeleton. 222

Clavicle 222
Scapula 223

8.2 The bones of each upper limb include the humerus, ulna, radius, carpals, metacarpals, and phalanges. 225

Humerus 225
Ulna and Radius 227
Carpals, Metacarpals, and Phalanges 229

8.3 The pelvic girdle supports the vertebral column and pelvic viscera and attaches the lower limbs to the axial skeleton. 231

Ilium 232
Ischium 232
Pubis 234
Acetabulum 234
False and True Pelves 234

8.4 Male pelves are generally larger, heavier, and have more prominent markings; female pelves are generally wider and shallower. 236

8.5 The bones of each lower limb include the femur, patella, tibia, fibula, tarsals, metatarsals, and phalanges. 238

Femur 238
Patella 240
Tibia and Fibula 240
Tarsals, Metatarsals, and Phalanges 242

Isoken's Story: Epilogue and Discussion 243
Concept and Resource Summary 243
Understanding the Concepts 245

9 ARTICULATIONS 246

Janet's Story 246
Introduction 247

9.1 Joints are classified structurally and functionally. 248

9.2 Fibrous joints lack a synovial cavity and are held together by dense connective tissue. 248

Sutures 248
Syndesmoses 248
Interosseous Membranes 249

9.3 Cartilaginous joints lack a synovial cavity and are held together by cartilage. 250

Synchondroses 250
Symphyses 250

9.4 Articulating surfaces of bones at a synovial joint are covered with articular cartilage and enclosed within an articular (synovial) cavity. 250

Articular Capsule 250
Synovial Fluid 252
Accessory Ligaments and Articular Menisci 252
Bursae and Tendon Sheaths 252

9.5 Synovial joint movement terminology indicates the direction of movement or the relationships of body parts during movement. 254

Gliding 254
Angular Movements 254
Rotation 256
Special Movements 257

9.6 Synovial joints are described as plane, hinge, pivot, condylar, saddle, or ball-and-socket. 259

Plane Joints 259
Hinge Joints 259
Pivot Joints 261
Condyloid Joints 261
Saddle Joints 261
Ball-and-Socket Joints 261
9.7 The shoulder, elbow, hip, and knee joints provide examples of synovial joint components, classifications, and movements. 263
 The Shoulder Joint 266
 The Elbow Joint 268
 The Hip Joint 269
 The Knee Joint 271

Janet's Story: Epilogue and Discussion 274

Concept and Resource Summary 274

Understanding the Concepts 277

10 MUSCLE TISSUE 278

Amanda's Story 278

Introduction 279

10.1 Skeletal, cardiac, and smooth muscle tissues differ in location, structure, and function. 280

10.2 Muscle tissue performs four functions and possesses four properties. 280
 Functions of Muscle Tissue 280
 Properties of Muscle Tissue 281

10.3 Skeletal muscles are surrounded by connective tissues and are well supplied with nerves and blood vessels. 281
 Connective Tissue Components 281
 Nerve and Blood Supply 283

10.4 Each skeletal muscle fiber is covered by a sarcolemma; each of its myofibrils is surrounded by sarcoplasmic reticulum and contains sarcomeres. 283
 Sarcolemma, Transverse Tubules, and Sarcoplasm 283
 Myofibrils and Sarcoplasmic Reticulum 283
 Filaments and the Sarcomere 285
 Muscle Proteins 286

10.5 The neuromuscular junction is the site where a muscle action potential is initiated. 288

10.6 An action potential releases calcium ions that allow thick filaments to bind to and pull thin filaments toward the center of the sarcomere. 291
 Excitation–Contraction Coupling 291
 The Contraction Cycle 291
 Relaxation 293

10.7 Muscle tension is controlled by stimulation frequency and motor unit recruitment. 295
 Motor Units 295
 Twitch Contraction 295
 Frequency of Stimulation 296
 Motor Unit Recruitment 296
 Muscle Tone 297
 Isotonic and Isometric Contractions 297

10.8 Muscle fibers produce ATP from creatine phosphate, by anaerobic cellular respiration, and by aerobic cellular respiration. 299
 Production of ATP in Muscle Fibers 299
 Muscle Fatigue 300
 Oxygen Consumption after Exercise 300

10.9 Skeletal muscle fibers are classified as slow oxidative fibers, fast oxidative-glycolytic fibers, or fast glycolytic fibers. 301
 Slow Oxidative Fibers 301
 Fast Oxidative-Glycolytic Fibers 301
 Fast Glycolytic Fibers 301
 Distribution and Recruitment of Different Types of Fibers 301

10.10 Cardiac muscle tissue is found in the heart, and smooth muscle tissue is found in hollow internal structures. 303
 Cardiac Muscle Tissue 303
 Smooth Muscle Tissue 304

Amanda's Story: Epilogue and Discussion 307

Concept and Resource Summary 307

Understanding the Concepts 311
11 THE MUSCULAR SYSTEM

11.1 Skeletal muscles produce movement when the insertion is pulled toward the origin. 314
Muscle Attachment Sites: Origin and Insertion 314
Lever Systems and Leverage 315
Effects of Fascicle Arrangement 315
Coordination among Muscles 315

11.2 Skeletal muscles are named based on size, shape, action, location, or attachments. 316

11.3 Muscles of the head produce facial expressions, eyeball movement, and assist in biting, chewing, swallowing, and speech. 321
Muscles of Facial Expression 321
Muscles That Move the Eyeballs 324
Muscles That Move the Mandible 325
Muscles That Move the Tongue 325

11.4 Muscles of the neck assist in swallowing and speech, and allow balance and movement of the head. 328
Muscles That Move the Hyoid Bone and Larynx 328
Muscles That Move the Head 330

11.5 Muscles of the abdomen protect the abdominal viscera, move the vertebral column, and assist breathing. 332
Muscles That Protect Abdominal Viscera and Move the Vertebral Column 332
Muscles Used in Breathing 335

11.6 Muscles of the pelvic floor and perineum support the pelvic viscera, function as sphincters, and assist in urination, erection, ejaculation, and defecation. 337
Muscles of the Pelvic Floor 337
Muscles of the Perineum 339

11.7 Muscles inserting on the upper limb move and stabilize the pectoral girdle, and move the arm, forearm, and hand. 340
Muscles That Move the Pectoral Girdle 340
Muscles That Move the Humerus 342
Muscles That Move the Radius and Ulna 346

Muscles That Move the Wrist, Hand, and Fingers 348
Intrinsic Muscles of the Hand 352

11.8 Deep muscles of the back move the head and vertebral column. 355

11.9 Muscles originating on the pelvic girdle or lower limb move the femur, leg, and foot. 360
Muscles That Move the Femur 360
Muscles That Move the Femur, Tibia, and Fibula 366
Muscles That Move the Foot and Toes 366
Intrinsic Muscles of the Foot 372

Oscar's Story: Epilogue and Discussion 374
Concept and Resource Summary 374
Understanding the Concepts 377

12 INTRODUCTION TO THE NERVOUS SYSTEM

12.1 The nervous system maintains homeostasis and integrates all body activities. 380
Central Nervous System 380
Peripheral Nervous System 380

12.2 The nervous system is organized into the central and peripheral nervous system. 380

12.3 Neurons are responsible for most of the unique functions of the nervous system. 382
Parts of a Neuron 382
Structural Diversity and Classification of Neurons 384

12.4 Neuroglia support, nourish, and protect neurons and maintain homeostasis. 385
Neuroglia of the CNS 385
Neuroglia of the PNS 386
Myelination 386
Gray and White Matter 388

12.5 Neurons communicate with other cells. 390
Ion Channels 391
Resting Membrane Potential 393
12.6 Graded potentials are the first response of a neuron to stimulation. 395

12.7 The action potential is an all-or-none electrical signal. 397
- Depolarizing Phase 398
- Repolarizing Phase 400
- After-Hyperpolarizing Phase 400
- Refractory Period 400

12.8 Action potentials propagate from the trigger zone to axon terminals. 400
- Continuous and Saltatory Conduction 401
- Factors That Affect the Speed of Propagation 402
- Encoding of Stimulus Intensity 402
- Comparison of Electrical Signals Produced by Excitable Cells 403

12.9 The synapse is a special junction between neurons. 403
- Chemical Synapses 405
- Electrical Synapses 406
- Excitatory and Inhibitory Postsynaptic Potentials 406
- Summation of Postsynaptic Potentials 406
- Removal of Neurotransmitter 408

12.10 PNS neurons have a greater capacity for repair and regeneration than CNS neurons. 409
- Damage and Repair in the CNS 409
- Damage and Repair in the PNS 410

Jennifer's Story: Epilogue and Discussion 411

Concept and Resource Summary 411

Understanding the Concepts 415

13 THE CENTRAL NERVOUS SYSTEM 416

Carin's Story 416

Introduction 417

13.1 The CNS consists of the brain and spinal cord, and is protected by several structures. 418
- Skeletal Protection 420
- Meninges 420
- Cerebrospinal Fluid 422

13.2 The CNS is nourished and protected by blood and cerebrospinal fluid. 423
- Blood Flow to the Brain and Spinal Cord 423
- Cerebrospinal Fluid 423

13.3 The cerebrum interprets sensory impulses, controls muscular movements, and functions in intellectual processes. 428
- Cerebral Cortex 428
- Lobes of the Cerebrum 428
- Cerebral White Matter 430
- Basal Nuclei 431

13.4 The cerebral cortex can be divided functionally into sensory areas, motor areas, and association areas. 432
- Sensory Areas 433
- Motor Areas 433
- Association Areas 433
- Hemispheric Lateralization 434

13.5 The diencephalon includes the thalamus, hypothalamus, and pineal gland. 436
- Thalamus 436
- Hypothalamus 437
- Pineal Gland 439

13.6 The midbrain, pons, and medulla oblongata of the brain stem serve as a relay station and control center. 439
- Midbrain 439
- Pons 441
- Medulla Oblongata 441
- Reticular Formation 442

13.7 The cerebellum coordinates movements and helps maintain normal muscle tone, posture, and balance. 444

13.8 The limbic system controls emotions, behavior, and memory. 445

13.9 The spinal cord receives sensory input and provides motor output through spinal nerves. 446
- External Anatomy of the Spinal Cord 446
- Internal Anatomy of the Spinal Cord 447

13.10 The spinal cord conducts impulses between spinal nerves and the brain, and contains reflex pathways. 449
- Sensory and Motor Tracts 449
- Spinal Reflexes 450
16.9 Impulses for equilibrium propagate along the vestibulocochlear nerve to the brain. 566

Physiology of Equilibrium 566
Equilibrium Pathways 569

Barry's Story: Epilogue and Discussion 571

Concept and Resource Summary 571
Understanding the Concepts 575

17 THE ENDOCRINE SYSTEM 576

Carolyn's Story 576

Introduction 577

17.1 The nervous and endocrine systems function together to regulate body activities. 578

Endocrine Glands 578

17.2 The secretion of hormones is regulated by the nervous system, chemical changes in the blood, and other hormones. 580

The Role of Hormone Receptors 580
Chemical Classes of Hormones 580
Hormone Transport in the Blood 582
Mechanism of Hormone Action 582
Control of Hormone Secretion 583

17.3 The hypothalamus regulates anterior pituitary hormone secretion of seven important hormones. 584

The Hypothalamus 584
The Pituitary Gland 584

17.4 Oxytocin and antidiuretic hormone originate in the hypothalamus and are stored in the posterior pituitary. 589

Oxytocin 590
Antidiuretic Hormone 590

17.5 The thyroid gland secretes thyroxine, triiodothyronine, and calcitonin. 593

Formation, Storage, and Release of Thyroid Hormones 594
Actions of Thyroid Hormones 595
Control of Thyroid Hormone Secretion 595
Calcitonin 595

17.6 The parathyroid glands secrete parathyroid hormone, which regulates calcium, magnesium, and phosphate ion levels. 596

Parathyroid Hormone 596

17.7 The adrenal glands are structurally and functionally two independent endocrine glands. 599

Adrenal Cortex 600
Adrenal Medulla 602

17.8 The pancreatic islets regulate blood glucose level by secreting glucagon and insulin. 603

Regulation of Glucagon and Insulin Secretion 605

17.9 The ovaries produce estrogens, progesterone, and inhibin; the testes produce testosterone and inhibin. 607

17.10 The pineal gland, thymus, and other organs also secrete hormones. 608

The Pineal Gland 608
The Thymus 608
Hormones from Other Endocrine Tissues and Organs 608

Eicosanoids 608

Carolyn's Story: Epilogue and Discussion 609

Concept and Resource Summary 610
Understanding the Concepts 613

18 THE CARDIOVASCULAR SYSTEM: THE BLOOD 614

Adrienne's Story 614

Introduction 615

18.1 Blood contains plasma and formed elements and transports essential substances through the body. 616

Functions of Blood 616
Physical Characteristics of Blood 616
Components of Blood 616

18.2 Hemopoiesis is the production of formed elements. 619

18.3 Mature red blood cells are biconcave cells containing hemoglobin. 621

RBC Anatomy 621
RBC Physiology 621
18.4 Red blood cells have a life cycle of 120 days. 622
18.5 Erythropoiesis is the process of red blood cell formation. 624
18.6 Blood is categorized into groups based on surface antigens. 625
 ABO Blood Group 626
 Transfusions 626
 Rh Blood Group 627
 Typing and Cross-Matching Blood for Transfusion 627
18.7 White blood cells combat inflammation and infection. 628
 WBC Types 628
 WBC Functions 629
 WBC Life Span 630
18.8 Platelets reduce blood loss from damaged vessels. 631
18.9 Hemostasis is the sequence of events that stops bleeding from a damaged blood vessel. 633
 Vascular Spasm 634
 Platelet Plug Formation 634
 Blood Clotting 634
 Hemostatic Control Mechanisms 636
 Clotting in Blood Vessels 636
Adrienne's Story: Epilogue and Discussion 637
Concept and Resource Summary 638
Understanding the Concepts 641

19 THE CARDIOVASCULAR SYSTEM: THE HEART 642
Adam's Story 642
Introduction 643
19.1 The heart is located in the mediastinum and has a muscular wall covered by pericardium. 644
 Location of the Heart 644
 Pericardium 644
 Layers of the Heart Wall 645
19.2 The heart has four chambers, two upper atria and two lower ventricles. 647
 Right Atrium 649
 Right Ventricle 649
 Left Atrium 649
 Left Ventricle 651
 Myocardial Thickness and Function 651
19.3 Heart valves ensure one-way flow of blood. 651
 Operation of the Atrioventricular Valves 651
 Operation of the Semilunar Valves 651
19.4 The heart pumps blood to the lungs for oxygenation, then pumps oxygen-rich blood throughout the body. 654
 Systemic and Pulmonary Circulations 654
 Coronary Circulation 655
19.5 The cardiac conduction system coordinates heart contractions for effective pumping. 658
 Cardiac Muscle Tissue 658
 Autorhythmic Fibers: The Cardiac Conduction System 658
 Contraction of Contractile Fibers 658
 ATP Production in Cardiac Muscle 660
19.6 The electrocardiogram is a record of electrical activity associated with each heartbeat. 660
 Electrocardiogram 660
 Correlation of ECG Waves with Heart Activity 661
19.7 The cardiac cycle represents all of the events associated with one heartbeat. 663
 Heart Sounds during the Cardiac Cycle 663
 Pressure and Volume Changes during the Cardiac Cycle 664
19.8 Cardiac output is the blood volume ejected by a ventricle each minute. 667
 Regulation of Stroke Volume 667
 Regulation of Heart Rate 668
Adam's Story: Epilogue and Discussion 670
Concept and Resource Summary 670
Understanding the Concepts 673
THE CARDIOVASCULAR SYSTEM:
BLOOD VESSELS 674

Introduction 675

20.1 Most blood vessel walls have three distinct tissue layers. 676
 Tunica Interna 676
 Tunica Media 677
 Tunica Externa 677

20.2 Blood ejected from the heart flows through elastic arteries, muscular arteries, and then arterioles. 678
 Elastic Arteries 678
 Muscular Arteries 678
 Anastomoses 679
 Arterioles 679

20.3 Capillaries are microscopic blood vessels that function in exchange between blood and interstitial fluid. 680
 Structure of Capillaries 680
 Types of Capillaries 681
 Autoregulation of Capillary Blood Flow 681
 Capillary Exchange 681

20.4 Venules and veins return blood to the heart. 683
 Venules 683
 Veins 684
 Venous Return 685
 Blood Distribution 687

20.5 Blood flows from regions of higher pressure to those of lower pressure. 688
 Blood Pressure 689
 Vascular Resistance 689

20.6 Blood pressure is regulated by neural and hormonal negative feedback systems. 690
 Role of the Cardiovascular Center 690
 Neural Regulation of Blood Pressure 691
 Hormonal Regulation of Blood Pressure 692

20.7 Measurement of the pulse and blood pressure helps assess cardiovascular system function. 694

Pulse 694
Measuring Blood Pressure 694

20.8 The two main circulatory routes are the pulmonary circulation and the systemic circulation. 695
 Pulmonary Circulation 695
 Systemic Circulation 697

20.9 Systemic arteries carry blood from the heart to all body organs except the lungs. 699
 The Aorta and Its Branches 699
 The Arch of the Aorta 702
 Thoracic Aorta 707
 Abdominal Aorta 710
 Arteries of the Pelvis and Lower Limbs 715

20.10 Systemic veins return blood to the heart from all body organs except the lungs. 718
 Veins of the Head and Neck 720
 Veins of the Upper Limbs 723
 Veins of the Thorax 727
 Veins of the Abdomen and Pelvis 729
 Veins of the Lower Limbs 732
 Hepatic Portal Circulation 735

Manish's Story: Epilogue and Discussion 737
Concept and Resource Summary 738
Understanding the Concepts 741

21 THE LYMPHATIC SYSTEM AND IMMUNITY 742

Marlene's Story 742
Introduction 743

21.1 The lymphatic system drains interstitial fluid, transports dietary lipids, and protects against invasion. 744

21.2 Lymph flows through lymphatic capillaries, lymphatic vessels, and lymph nodes. 745
 Lymphatic Capillaries 745
Lymph Trunks and Ducts 746
Formation and Flow of Lymph 746

21.3 The lymphatic organs and tissues include the thymus, lymph nodes, spleen, and lymphatic follicles. 748

- Thymus 748
- Lymph Nodes 749
- Spleen 751
- Lymphatic Follicles 752

21.4 Innate immunity includes external physical and chemical barriers and various internal defenses. 753

- First Line of Defense: Skin and Mucous Membranes 753
- Second Line of Defense: Internal Defenses 754

21.5 The complement system destroys microbes through phagocytosis, cytolysis, and inflammation. 758

21.6 Adaptive immunity involves the production of a specific lymphocyte or antibody against a specific antigen. 759

- Maturation of T Cells and B Cells 759
- Types of Adaptive Immunity 759
- Clonal Selection 760
- Antigens and Antigen Receptors 761
- Major Histocompatibility Complex Molecules 761
- Processing and Presenting Antigens 762
- Cytokines 763

21.7 In cell-mediated immunity, cytotoxic T cells directly attack target cells. 763

- Activation of T Cells 763
- Elimination of Invaders 765

21.8 In antibody-mediated immunity, antibodies specifically target a particular antigen. 766

- Activation and Clonal Selection of B Cells 767
- Antibodies 768
- Antibody Actions 769

21.9 Immunological memory results in a more intense secondary response to an antigen. 771

Marlene's Story: Epilogue and Discussion 772
Concept and Resource Summary 772
Understanding the Concepts 775

22 THE RESPIRATORY SYSTEM 776

Glenda's Story 776

Introduction 777

22.1 Inhaled air travels in the upper respiratory system through the nasal cavities and then through the pharynx. 778

- Nose 779
- Pharynx 781

22.2 Inhaled air travels in the lower respiratory system from the larynx to alveoli. 782

- Larynx 782
- The Structures of Voice Production 783
- Trachea 785
- Bronchi 786
- Lungs 787

22.3 Inhalation and exhalation result from pressure changes caused by muscle contraction and relaxation. 792

- Pressure Changes during Pulmonary Ventilation 792
- Other Factors Affecting Pulmonary Ventilation 795
- Modified Respiratory Movements 797

22.4 Lung volumes and capacities are measured to determine the respiratory status of an individual. 798

22.5 Oxygen and carbon dioxide diffusion is based on partial pressure gradients and solubility. 800

22.6 Respiration occurs between alveoli and pulmonary capillaries and between systemic capillaries and tissue cells. 800

22.7 Oxygen is primarily transported attached to hemoglobin, while carbon dioxide is transported in three different ways. 803

- Oxygen Transport 803
- Carbon Dioxide Transport 806
- Summary of Gas Exchange and Transport 806

22.8 The basic rhythm of respiration is controlled by the respiratory center in the brain stem. 808

- Medullary Rhythmicity Area 808
- Pneumotaxic Area 809
- Apneustic Area 809

xxxvii
22.9 Respiration may be modified by cortical influences, chemical stimuli, proprioceptor input, and the inflation reflex. 810

Cortical Influences on Respiration 810
Chemosensitive Regulation of Respiration 811
Proprioceptor Stimulation of Respiration 812
The Inflation Reflex 812
Other Influences on Respiration 813

22.10 Acid–base balance is maintained by controlling the H+ concentration of body fluids. 814

The Actions of Buffer Systems 814
Exhalation of Carbon Dioxide 815
Acid–Base Imbalances 816

Glenda's Story: Epilogue and Discussion 817
Concept and Resource Summary 817
Understanding the Concepts 821

23 THE DIGESTIVE SYSTEM 822
Zachary's Story 822
Introduction 823

23.1 The GI tract is a continuous multilayered tube extending from the mouth to the anus. 824

Overview of the Digestive System 824
Layers of the GI Tract 825
Peritoneum 826
Neural Innervation of the GI Tract 828

23.2 The mouth lubricates and begins digestion of food, and maneuvers it to the pharynx for swallowing. 830

Tongue 831
Teeth 832
Salivary Glands 833
Mechanical and Chemical Digestion in the Mouth 834

23.3 Swallowing consists of voluntary oral, involuntary pharyngeal, and involuntary esophageal stages. 835

Pharynx 835

xxxviii

Esophagus 835
Deglutition 836

23.4 The stomach mechanically breaks down the bolus and mixes it with gastric secretions. 838

Anatomy of the Stomach 840
Histology of the Stomach 840
Mechanical and Chemical Digestion in the Stomach 841

23.5 The pancreas secretes pancreatic juice, the liver secretes bile, and the gallbladder stores and concentrates bile. 844

Pancreas 844
Liver 846
Gallbladder 849

23.6 In the small intestine, chyme mixes with digestive juices from the small intestine, pancreas, and liver. 849

Anatomy of the Small Intestine 849
Histology of the Small Intestine 850
Role of Intestinal Juice and Brush Border Enzymes 853
Mechanical Digestion in the Small Intestine 853
Chemical Digestion in the Small Intestine 854
Absorption in the Small Intestine 856

23.7 In the large intestine, the final secretion and absorption of nutrients occur as chyme moves toward the rectum. 859

Anatomy of the Large Intestine 859
Histology of the Large Intestine 861
Mechanical Digestion in the Large Intestine 863
Chemical Digestion in the Large Intestine 863
Absorption and Feces Formation in the Large Intestine 863
The Defecation Reflex 864

23.8 Digestive activities occur in three overlapping phases: cephalic, gastric, and intestinal. 865

Cephalic Phase 865
Gastric Phase 866
Intestinal Phase 866

23.9 Metabolism includes the catabolism and anabolism of molecules. 868

Metabolic Reactions 868
Food molecules supply energy for life processes and serve as building blocks for complex molecules. 876
Guidelines for Healthy Eating 876
Minerals 877
Vitamins 877

Zachary's Story: Epilogue and Discussion 878
Concept and Resource Summary 878
Understanding the Concepts 883

24 THE URINARY SYSTEM 884

Andy's Story 884
Introduction 885

24.1 The kidneys regulate the composition of the blood, produce hormones, and excrete wastes. 886

24.2 As urine forms, it travels through the renal medulla, calyces, and renal pelvis. 887
- External Anatomy of the Kidneys 888
- Internal Anatomy of the Kidneys 888
- Blood Supply of the Kidneys 889

24.3 Each nephron consists of a renal corpuscle and a renal tubule. 890
- Parts of a Nephron 890
- Histology of the Nephron and Collecting Duct 892

24.4 Urine is formed by glomerular filtration, tubular reabsorption, and tubular secretion. 895
- The Filtration Membrane 896
- Net Filtration Pressure 898
- Glomerular Filtration Rate 898

24.6 Tubular reabsorption reclaims needed substances from the filtrate, while tubular secretion discharges unneeded substances. 902
- Principles of Tubular Reabsorption and Secretion 902
- Reabsorption and Secretion in the Proximal Convoluted Tubule 904
- Reabsorption in the Nephron Loop 905
- Reabsorption and Secretion in the Distal Convoluted Tubule and Collecting Duct 906

24.7 Five hormones regulate tubular reabsorption and tubular secretion. 907
- Renin–Angiotensin–Aldosterone System 907
- Antidiuretic Hormone 908
- Atrial Natriuretic Peptide 908
- Parathyroid Hormone 908

24.8 The kidneys regulate the rate of water loss in urine. 909
- Formation of Dilute Urine 909
- Formation of Concentrated Urine 910

24.9 The kidneys help maintain the overall fluid and acid–base balance of the body. 914
- Fluid Balance 914
- Acid–Base Balance 916

24.10 The ureters transport urine from the renal pelvis to the urinary bladder, where it is stored until micturition. 918
- Ureters 918
- Urinary Bladder 919
- Urethra 919

Andy's Story: Epilogue and Discussion 921
Concept and Resource Summary 922
Understanding the Concepts 925

25 THE REPRODUCTIVE SYSTEMS AND DEVELOPMENT 926

Ryan and Megan's Story 926
Introduction 927

25.1 The scrotum supports and regulates the temperature of the testes, which produce spermatozoa. 928
- Scrotum 928
- Testes 930
25.2 Sperm travel through the epididymis, ductus deferens, ejaculatory ducts, and urethra. 936
Reproductive System Ducts in Males 936
Accessory Sex Glands 936
Semen 938
Penis 939

25.3 After a secondary oocyte is discharged from an ovary, it may undergo fertilization and implantation in the uterus. 941
Ovaries 941
Uterine Tubes 949
Uterus 950

25.4 The vagina is a passageway for childbirth; the mammary glands secrete milk. 953
Vagina 953
Vulva 954
Perineum 956
Mammary Glands 957

25.5 The female reproductive cycle includes the ovarian and uterine cycles. 958
Hormonal Regulation of the Female Reproductive Cycle 958
Phases of the Female Reproductive Cycle 959

25.6 The zygote divides into a morula and then a blastocyst that implants in the endometrium of the uterus. 964
First Week of Development 964

25.7 Major tissues and organs develop during embryonic development and grow and differentiate during fetal development. 967
Second Week of Development 967
Third Week of Development 969
Fourth through Eighth Weeks of Development 971
Ninth through Thirty-Eighth Week of Development 973

25.8 During pregnancy the uterus expands, displacing and compressing maternal organs. 975
Hormones of Pregnancy 975
Changes during Pregnancy 977

25.9 Labor includes dilation of the cervix and expulsion of the fetus and placenta. 978
Labor and Delivery 978
Adjustments of the Infant at Birth 980

25.10 Lactation is influenced by prolactin, estrogens, progesterone, and oxytocin. 980

Ryan and Megan's Story: Epilogue and Discussion 982
Concept and Resource Summary 982
Understanding the Concepts 987

Appendix A Measurements A-1
Appendix B Periodic Table B-1
Appendix C Normal Values for Selected Blood Tests C-1
Appendix D Normal Values for Selected Urine Tests D-1
Appendix E Answers to Checkpoint Questions E-1
Credits CR-1
Glossary G-1
Index I-1