Contents

Foreword
Stuart B. Levy
Stuart B. Levy
Stuart B. Levy

Foreword to the First Edition, Revised
Jacques F. Acar
Jacques F. Acar

Foreword to the First Edition
Michel Glauser and Philippe Moreillon
Michel Glauser and Philippe Moreillon

Preface
xxvii
xxvii

Contributors
xxix

1 Historical Review of Antibacterial Chemotherapy / 1

A. Bryskier
1. Introduction
2. The Penicillin Era
3. The Postpenicillin Era

2 Antibiotics and Antibacterial Agents: Classifications and Structure-Activity Relationship / 13

A. Bryskier
1. Introduction
2. The β-Lactam Family
3. Aminoglycosides
4. Macrolides
5. Fluoroquinolones
6. Peptide Antibiotics
7. Ansamycins
8. Tetracyclines
9. Lincosamides
10. Chloramphenicol
11. Benzylpyrimidines
12. Sulfonamides
13. 5-Nitroimidazoles

3 Epidemiology of Resistance to Antibacterial Agents / 39

A. Bryskier
1. Introduction
2. Process of Bacterial Selection
3. In Vitro Methodology
4. Adaptation of Bacteria to Aggression by Antibacterial Agents
5. Biological Costs for Resistant Bacteria
6. Lower RTIs in the Community
7. Frequency of Nosocomial Infections
8. Gram-Positive Cocci
9. Gram-Negative Cocci
10. Enterobacteriaceae
11. Nonfermentative Gram-Negative Bacilli
12. Fastidious Gram-Negative Bacilli
13. Other Gram-Negative Bacilli
14. Anaerobic Bacteria
15. Mycobacterium tuberculosis
16. Ureaplasma urealyticum
17. Chlamydia spp.
18. How To Establish an Epidemiological Survey
19. Combating Resistance

vii
4 Development of an Antibiotic: Microbiology

A. Bryskier

1. Introduction 93
2. Preselection of a Molecule 93
3. Basic Documentation 94
4. “Core” Dossier 97
5. Animal Models 105
6. Specific Indications 105
7. Mechanisms of Action and Resistance 105
8. Interaction with Fecal and Oral Floras 106
9. Place of Clinical Microbiology in Phase II and III Clinical Studies 107
10. Epidemiological Studies 109
11. Additional Studies 109
12. Breakpoint Determinations 110
13. Conclusion 110

5 Penicillins

A. Bryskier

1. Introduction 113
2. Classification of Penicillins 113
3. Mechanism of Action of Penicillins 113
4. Resistance Mechanisms 113
5. Group I: Penicillin G and Derivatives 113
6. Group II: Group M Penicillins 121
7. Group III: Group A Penicillins 129
8. Group IV: α-Carboxy- and α-Sulfopenicillins 148
9. Group V: 6-α-Penicillins 153
10. Group VI: Aminopenicillins 156
11. Group VII: Oxyiminopenicillins 158

6 Cephems for Parenteral Use

A. Bryskier and J. Aszodi

1. Introduction 163
2. Classifications of Cephems 164

7 Oral Cephalosporins

A. Bryskier and M. Lebel

1. Introduction 222
2. Classification 222
3. Physicochemical Properties 223
4. Structure-Activity Relationship 224
5. Antibacterial Activity 225
6. Epidemiology of Resistance 232
7. Pharmacokinetics 237
8. Pharmacokinetics in Specific Populations 239
9. Renal Insufficiency 247
10. Hepatic Insufficiency 248
11. Gastrectomized Patients 248
12. Metabolism 250
13. Oral Cephems under Investigation 253
14. Interactions with Other Medicinal Products 255
15. Clinical Indications 255
16. Adverse Effects 255

8 Carbapenems

A. Bryskier

1. Background 269
2. Classification 269
3. Peptidoglycan Biosynthesis Inhibitors 381
4. Mersacidin 397

13 β-Lactamase Inhibitors / 401
A. KAZMIERCZAK
1. Introduction 401
2. β-Lactamases and Hydrolysis Reactions 401
3. β-Lactamases and Inhibition Reactions 402
4. In Vitro Activity of β-Lactamase Inhibitors 404
5. Pharmacokinetics of Inhibitors 406
6. Conclusion 409

14 β-Lactamase Inhibitors under Research / 410
ANDRE BRYSKIER, CATHERINE COUTURIER, AND JOHN LOWTHER
1. Introduction 410
2. Role of β-Lactamases 411
3. Rationale for Research on β-Lactamase Inhibitors 411
4. Classifications of β-Lactamases and Related Inhibitors 411
5. β-Lactamase Inhibitors 413
6. Non-β-Lactams as β-Lactamase Inhibitors 435
7. Conclusion 444

15 γ-Lactams and Derivatives / 447
A. BRYSKIER
1. Introduction 447
2. γ-Lactams 447
3. Pyrazolidinones 448
4. Lactivicins 449

16 Aminocyclitol Aminoglycosides / 453
P. VEYSSIER AND A. BRYSKIER
1. Introduction 453
2. Chemical Structure and Classification 455
3. Physicochemical Properties 456
4. Antibacterial Spectrum and Activity 457
5. Mode of Action of Aminoglycosides 458
7. Mechanisms of Bacterial Resistance to Aminoglycosides 460
8. Pharmacology of Aminoglycosides 460
9. Pharmacology in Humans 460
10. Metabolism and Excretion 460
11. Renal Behavior of Aminoglycosides and Its Effects 461
12. Distribution in Body Tissues and Fluids 461
13. Pharmacokinetics as a Function of Diathesis 462
14. Drug Interactions—Physicochemical Incompatibilities 463
15. Incidents and Accidents Associated with Aminoglycosides 464
16. Dosage and Route of Administration 468
17. Current Clinical Indications of Aminoglycosides 468
18. Conclusion 469

17 Spectinomycin / 470
A. BRYSKIER
1. Structure and Structure-Activity of Spectinomycin 470
2. Physicochemical Properties 471
3. Antibacterial Activity 471
4. Mechanisms of Action and Resistance 472
5. Epidemiology of Resistance of N. gonorrhoeae 472
6. Breakpoints 473
18 **Macrolides** / 475
A. BRYSKIER AND E. BERGOGNE-BÉRÉZIN
1. Definition of Macrolides 475
2. Classifications 475
3. Erythromycin A 475
4. Structure-Activity Relationships 480
5. Physicochemical Properties 483
6. Intracellular Accumulation of Macrolides 484
7. In Vitro Activity of Macrolides 484
8. Mechanism(s) of Action of Macrolides 492
9. Epidemiology of Resistance to Erythromycin A 495
10. Resistance Mechanisms 496
11. Plasma Pharmacokinetics of Macrolides 503
12. Pharmacokinetics at Different Stages of Life 507
13. Pharmacokinetics in Pathological Predispositions 512
14. Rectal Pharmacokinetics 516
15. Metabolism 516
16. Tissue Distribution 517
17. Pharmacodynamics 517
18. Drug Interactions 517
19. Other Effects of Macrolides 521
20. Therapeutic Indications 524

19 **Ketolides** / 527
A. BRYSKIER
1. Introduction 527
2. Epidemiology of Resistance to Macrolides 528
3. Classification 528
4. Ketolides 528
5. Telithromycin (HMR 3647) 536
6. Mechanisms of Action 540
7. Mechanism of Resistance of Ketolides 542
8. Pharmacodynamics 545
9. Intracellular Concentrations 546
10. Pharmacokinetics of Telithromycin 546
11. Cethromycin (ABT 773) 550
12. HMR 3004 551
13. TE-810 552
14. TE-802 552
15. 11,12-Carbamate, 6-Arylalkyl Macrolides 553
16. 2-Fluoroketolides 553
17. Other Ketolide Derivatives 557

20 **Streptogramins** / 570
A. BRYSKIER
1. Introduction 570
2. Classifications and Physicochemical Properties of Natural Streptogramins 570
3. Pristinamycins 573
4. Dalfopristin-Quinupristin (RP-59500) 581
5. RPR 106972 587
6. XRP 2868 590
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Lincosamines</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td>A. BRYSKIER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td>2. Pharmacokinetics</td>
<td>597</td>
</tr>
<tr>
<td></td>
<td>3. Therapeutic Indication</td>
<td>602</td>
</tr>
<tr>
<td>22</td>
<td>Oxazolidinones</td>
<td>604</td>
</tr>
<tr>
<td></td>
<td>A. BRYSKIER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>604</td>
</tr>
<tr>
<td></td>
<td>2. Chemical Structures</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>3. Structure-Activity Relationship</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>4. Physicochemical Properties</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td>5. DuP 105 and DuP 721</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td>6. Linezolid and Eperezolid</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>7. AZD 2563</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>8. Ranbezolid</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>10. New Investigational Molecules</td>
<td>616</td>
</tr>
<tr>
<td>23</td>
<td>Fusidic Acid</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>A. BRYSKIER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>2. Classifications</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>3. Production</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>4. Structure and Physicochemical Properties</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>5. Structure-Activity Relationship</td>
<td>632</td>
</tr>
<tr>
<td></td>
<td>6. Toxicological and Pharmacological</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Antibacterial Properties</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td>8. Mechanisms of Action</td>
<td>636</td>
</tr>
<tr>
<td></td>
<td>9. Resistance Mechanisms</td>
<td>638</td>
</tr>
<tr>
<td></td>
<td>10. Antibiotic Combinations</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>11. PAE</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>12. Antiparasitic Activity</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>13. Plasma Pharmacokinetics</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>14. Tissue Distribution</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>15. Eyedrops</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>16. Other Properties</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>17. Clinical Indications</td>
<td>641</td>
</tr>
<tr>
<td>24</td>
<td>Tetracyclines</td>
<td>642</td>
</tr>
<tr>
<td></td>
<td>A. BRYSKIER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>642</td>
</tr>
<tr>
<td></td>
<td>2. Chemical Structures</td>
<td>642</td>
</tr>
<tr>
<td></td>
<td>3. Classification</td>
<td>642</td>
</tr>
<tr>
<td></td>
<td>4. Physicochemical Properties</td>
<td>642</td>
</tr>
<tr>
<td></td>
<td>5. In Vitro Properties</td>
<td>643</td>
</tr>
<tr>
<td></td>
<td>6. Mechanisms of Action</td>
<td>644</td>
</tr>
<tr>
<td></td>
<td>7. Resistance Mechanisms</td>
<td>646</td>
</tr>
<tr>
<td></td>
<td>8. Pharmacokinetics</td>
<td>649</td>
</tr>
<tr>
<td></td>
<td>9. Tissue Distribution</td>
<td>649</td>
</tr>
<tr>
<td></td>
<td>10. Drug Interactions</td>
<td>649</td>
</tr>
<tr>
<td></td>
<td>11. Safety</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>12. Clinical Indications</td>
<td>650</td>
</tr>
<tr>
<td>25</td>
<td>Tetracyclines under Investigation</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td>A. BRYSKIER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td>2. Classification of Cyclines</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td>3. Tetracycline Resistance Mechanisms</td>
<td>652</td>
</tr>
</tbody>
</table>
4. Structural Modifications of Tetracyclines 654
5. Bactericidal Cycles 654
6. Dactylocyclines 656
7. Glycylecyclines 656
8. 8-Methoxychlortetracycline Derivatives 663
9. PTK 0796 (BAY 73-6944) 664
10. Other Tetracyclines 664

26 Fluoroquinolones / 668
A. BRYSKIER
1. Introduction 668
2. Chemical Structures 669
3. Structure-Activity Relationship 670
4. Classifications 677
5. Antibacterial Activity of Fluoroquinolones 682
6. Mechanisms of Action of Fluoroquinolones 714
7. Resistance Mechanisms of Fluoroquinolones 727
8. Pharmacodynamics 736
9. Pharmacokinetics 737
10. Tissue Distribution 748
11. Interactions 757
12. Clinical Indications 765
13. Safety 781

27 DNA Gyrase Inhibitors Other Than Fluoroquinolones / 789
A. BRYSKIER
1. Introduction 789
2. Cinodines 789
3. Coumaradine 790
4. Pyrimido[1,6-a]Benzimidazoles 790
5. Cyclothialidine (Ro-09-1437) 791
6. Cleroacidin 792
7. 2-Pyridone Carboxylic Acid Derivatives 792
8. CJ-12371 and CJ-12372 793
9. Microcin B17 794

28 Codrugs / 798
A. BRYSKIER
1. Introduction 798
2. Rationale of Codrugs 798
3. Definition 799
4. Classification 799
5. Mechanisms of Action 800
6. Mechanisms of Resistance 803
7. Physicochemical Properties 804
8. Cephalosporin-Type Derivatives 804
9. Penem-Quinolone Combinations 809
10. Carbapenems-Fluoroquinolones 812
11. Penicillins-Quinolones 813
12. Monocyclic β-Lactams/Quinolones 813
13. Oxazolidinones-Quinolones 814

29 Coumarin Antibiotics: Novobiocin, Coumermycin, and Clorobiocin / 816
A. BRYSKIER AND M. KLICH
1. Introduction 816
2. Structure and Physicochemical Properties 816
3. Structure-Activity Relationship 820
Peptide Antibiotics / 826
A. Bryskier
1. Introduction 826
2. Antibiotics of Miscellaneous Origin 826
3. Lantibiotics 831
4. Group I: Linear Peptides 833
5. Group II: Cyclic Peptides 839
6. Group III: Glycopeptides 843
7. Group IV: Lipoglycopeptides 848
8. Group V: Lipopeptides 854
9. Group VI: Thiopeptides and Chromopeptides 870
10. Miscellaneous Peptides 875

Glycopeptides and Lipoglycopeptides / 880
A. Bryskier
1. Introduction 880
2. Classification 880
3. Vancomycin 881
4. Telavancin 885
5. Oritavancin 895
6. Dalbavancin 896
7. AC 98-6646 898
8. Televancin 900

Ansamycins / 906
A. Bryskier
1. Introduction 906
2. Classification 906
3. Chemical Structure 907
4. Structure-Activity Relationship 907
5. Physicochemical Properties of Rifamycins 910
6. Production of Rifamycins 911
7. Assays of Rifampin 911
8. Stability of Ansamycins in Culture Media 911
9. Mechanisms of Action 912
10. Resistance 912
11. In Vitro Activity 914
12. Plasma Pharmacokinetics 914
13. Therapeutic Indications 921
14. Drug Interactions 923
15. Adverse Effects 923

Phenics / 925
A. Fisch and A. Bryskier
1. Introduction 925
2. Chemical Structures and Physicochemical Properties 925
3. In Vitro Properties 926
4. Mechanism of Action 927
5. Mechanisms of Resistance 927
6. Plasma Pharmacokinetics 927
7. Tissue Distribution 928
8. Drug Interference 928
34 5-Nitroimidazoles / 930

L. DUBREUIL

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>930</td>
</tr>
<tr>
<td>2. Structure</td>
<td>930</td>
</tr>
<tr>
<td>3. Physicochemical Properties</td>
<td>930</td>
</tr>
<tr>
<td>4. Antibacterial Activity</td>
<td>930</td>
</tr>
<tr>
<td>5. Pharmacokinetics of Metronidazole</td>
<td>934</td>
</tr>
<tr>
<td>6. Pharmacokinetics of Ornidazole</td>
<td>937</td>
</tr>
<tr>
<td>7. Pharmacokinetics of Tinidazole</td>
<td>938</td>
</tr>
<tr>
<td>8. Adverse Effects of the 5-Nitroimidazoles</td>
<td>938</td>
</tr>
<tr>
<td>9. Changes in Biochemical Constants</td>
<td>938</td>
</tr>
<tr>
<td>10. Drug Interactions</td>
<td>938</td>
</tr>
<tr>
<td>11. Therapeutic Indications</td>
<td>938</td>
</tr>
<tr>
<td>12. Physicochemical Incompatibilities</td>
<td>939</td>
</tr>
<tr>
<td>13. Dosage</td>
<td>939</td>
</tr>
<tr>
<td>14. Conclusion</td>
<td>940</td>
</tr>
</tbody>
</table>

35 Dihydrofolate Reductase Inhibitors, Nitroheterocycles (Furans), and 8-Hydroxyquinolines / 941

P. VEYSSIER AND A. BRYSKIER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sulfonamides and Combinations</td>
<td>941</td>
</tr>
<tr>
<td>2. New Exploratory Derivatives</td>
<td>956</td>
</tr>
<tr>
<td>3. Sulfoxides</td>
<td>957</td>
</tr>
<tr>
<td>4. Nitroheterocycles: Furans</td>
<td>960</td>
</tr>
<tr>
<td>5. 8-Hydroxyquinoline Derivatives</td>
<td>961</td>
</tr>
</tbody>
</table>

36 Mupirocin / 964

A. BRYSKIER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>964</td>
</tr>
<tr>
<td>2. Structure of Pseudomonic Acid</td>
<td>964</td>
</tr>
<tr>
<td>3. Physicochemical Properties</td>
<td>964</td>
</tr>
<tr>
<td>4. Antibacterial Properties</td>
<td>964</td>
</tr>
<tr>
<td>5. Pharmacokinetics and Metabolism</td>
<td>967</td>
</tr>
<tr>
<td>6. Semisynthetic Derivatives</td>
<td>968</td>
</tr>
<tr>
<td>7. Therapeutic Activity</td>
<td>969</td>
</tr>
</tbody>
</table>

37 Fosfomycin and Derivatives / 972

E. BERGOGNE-BÉRÉZIN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>972</td>
</tr>
<tr>
<td>2. Chemical Structure</td>
<td>972</td>
</tr>
<tr>
<td>3. Classification</td>
<td>972</td>
</tr>
<tr>
<td>4. Physicochemical Properties</td>
<td>972</td>
</tr>
<tr>
<td>5. In Vitro Properties</td>
<td>973</td>
</tr>
<tr>
<td>6. Mechanisms of Action of Fosfomycin</td>
<td>976</td>
</tr>
<tr>
<td>7. Mechanisms of Resistance</td>
<td>976</td>
</tr>
<tr>
<td>8. Plasma Pharmacokinetics</td>
<td>977</td>
</tr>
<tr>
<td>9. Tissue Distribution</td>
<td>979</td>
</tr>
<tr>
<td>10. Drug Interference</td>
<td>980</td>
</tr>
<tr>
<td>11. Tolerance</td>
<td>980</td>
</tr>
<tr>
<td>12. Clinical Indications</td>
<td>981</td>
</tr>
</tbody>
</table>

38 Orthosomycins / 983

A. BRYSKIER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Summary</td>
<td>983</td>
</tr>
<tr>
<td>2. Background</td>
<td>983</td>
</tr>
<tr>
<td>3. Classification</td>
<td>983</td>
</tr>
</tbody>
</table>
4. Physicochemical Properties of Evernimicin 986
5. Structure-Activity Relationship 987
6. Antibacterial Activity of Evernimicin 987
7. Mechanism of Action 988
8. Mechanisms of Resistance 988
9. Pharmacodynamics 989
10. Pharmacokinetics 989
11. Clinical Indications 990
12. Conclusion 990

39 Peptidyl Deformylase Inhibitors / 991
ANDRÉ BRYSKIER AND JOHN LOWTHER
1. Introduction 991
2. PDF 991
3. Deformylase inhibitors 995

40 Helicobacter pylori and Antibacterial Agents / 1011
ANDRÉ BRYSKIER, JOHN LOWTHER, AND CATHERINE COUTURIER
1. Introduction 1011
2. H. pylori: Taxonomy 1011
3. Epidemiology of H. pylori Infection 1012
4. Virulence of H. pylori 1012
5. Treatment of H. pylori Infections 1013
6. In Vitro Studies 1014
7. Animal Studies 1015
8. Epidemiology of Resistance to H. pylori 1015
9. Nonantibacterial Agents 1021
10. Antibacterial Agents 1026
11. Miscellaneous Anti-H. pylori Agents 1044

41 Microbial Efflux of Antibiotics and Inhibitors of Efflux Pumps / 1055
ANDRÉ BRYSKIER
1. Introduction 1055
2. Role of Efflux Pumps 1055
3. Potential Role in Antibacterial Resistance 1055
4. Classification of Efflux Pumps 1056
5. MFS Family 1057
6. SMR Family 1063
7. MATE Family 1064
8. RND Family 1066
9. ABC Transporters 1072
10. Antibacterials and Efflux 1073
11. Magnitude of Resistance to Efflux Pumps 1075
12. Efflux Pump Inhibitors 1075

42 Paldimycin / 1085
A. BRYSKIER
1. Introduction 1085
2. Structure of the Paulomycins 1085
3. Physicochemical Properties 1085
4. In Vitro Activity 1085

43 Antituberculosis Agents / 1088
ANDRÉ BRYSKIER AND JACQUES GROSSET
1. Introduction and History of TB 1088
2. In Vitro Testing of Anti-TB Drugs 1092
3. Anti-TB Antibiotics 1092
4. Streptomycin 1092
48 Benzonaphthyridones / 1181
A. BRYSKIER
1. RP 60556 1181
2. RP 203246 1182

49 Agents against Methicillin-Resistant Staphylococcus aureus / 1183
ANDRÉ BRYSKIER
1. Introduction 1183
2. Glycopeptides 1185
3. Lipoglycopeptides 1186
4. Peptides 1188
5. Lipopeptides 1189
6. Natural Products of Plant and Marine Origin 1193
7. Miscellaneous Compounds 1195
8. β-Lactam Antibiotics 1212
9. Topical Antistaphylococcal Compounds 1223
10. Cyclines 1225
11. Macrolides/Ketolides 1225
12. Lincosamides 1225
13. Fluoroquinolones 1227
14. Oxazolidinones 1227
15. Deformylase Inhibitors 1227
16. Aminopeptidase Inhibitors 1230

50 Mutilins / 1239
A. BRYSKIER
1. Structure 1239
2. Antibacterial Activity 1239
3. Mode of Action 1239
4. Mechanism of Resistance 1239
5. TDM 85530 1240
6. SB 247386 1240

51 In Pursuit of New Antibiotics / 1242
ANDRÉ BRYSKIER
1. Introduction 1242
2. Future Research 1245
3. State of Progress of Research 1246
4. Conclusion 1256

52 Systemic Antifungal Agents / 1260
R. GRILLOT AND B. LEBEAU
1. Introduction 1260
2. Antifungal Antibiotics 1260
3. Chemical Antifungals 1270
4. Conclusions and Prospects 1285

53 Antifungal Targets and Research into Antifungal Agents / 1288
A. BRYSKIER
1. Introduction 1288
2. Targets of Antifungal Agents 1289
3. Miscellaneous Antifungal Agents 1314
4. Other Potential Sites

5. Resistance Mechanisms

54 Drug Interactions during Anti-Infective Treatments / 1320

O. PETITJEAN, P. NICOLAS, M. TOD, C. PADOIN, AND A. JACOLOT

1. Mechanistic and Methodological Approach 1320
2. Interaction and Drug Absorption 1320
3. Interactions Relating to the Distribution Phase 1325
4. Interactions Relating to the Elimination Phase 1330
5. Study of Clinical Interaction Profiles 1340
6. Prospects 1342
7. Evaluation of Potential Drug-Drug Interactions 1343

55 Antibiotic Treatments and the Intestinal Ecosystem / 1353

A. ANDREMONT

1. Why This Chapter? 1353
2. Composition of the Colonic Flora 1353
3. Specificity and Stability 1353
4. Dominant and Subdominant Flora 1353
5. Infections Due to Bacteria of the Intestinal Flora 1354
6. Resident, Transient, and Pathogenic Flora 1354
7. Resistance to Colonization, Barrier Effects, and Microbial Antagonism 1354
8. Methods of Studying the Effect of Antibiotics on Colonization Resistance 1354
9. Effect of Antibiotics on the Resident Flora and Decontamination 1355
10. Risks of Decontamination 1355
11. Conclusion 1355

56 Interaction between Antimicrobial Agents and the Oropharyngeal and Intestinal Normal Microflora / 1357

ÅSA SULLIVAN, CHARLOTTA EDLUND, AND CARL ERIK NORD

1. Background 1357
2. The Normal Oropharyngeal Microflora 1357
3. The Normal Intestinal Microflora 1357
5. Impact of Penicillins on the Human Microflora 1359
6. Impact of Cephalosporins on the Human Microflora 1359
7. Impact of Monobactams, Carbapenems, and Glycopeptides on the Human Microflora 1361
8. Impact of Macrolides, Ketolides, Lincosamides, and Streptogramins on the Human Microflora 1362
9. Impact of Tetracyclines, Aminoglycosides, Nitrofurantoin, Oxazolidinone, Nitroimidazoles, and Folic Acid Antagonists on the Human Microflora 1363
10. Impact of Quinolones on the Human Microflora 1364
11. Conclusions 1366

57 Clinical Quality Assurance and the International Development of New Anti-Infective Agents / 1371

J. M. HUSSON, C. LIM, AND A. BRYSKIER

1. Introduction 1371
2. QA of Clinical Trials on Medicinal Products 1371
ANTIMICROBIAL AGENTS: ANTIBACTERIALS AND ANTIFUNGALS

3. Problems Posed by the Clinical Evaluation of AIA 1375
4. Current State of Acceptance of Clinical Trials Abroad for the International Registration of an AIA 1376
5. Conclusions 1376

Index 1379