Machine Learning in Action

PETER HARRINGTON
brief contents

Part 1 Classification

1. Machine learning basics 3
2. Classifying with k-Nearest Neighbors 18
3. Splitting datasets one feature at a time: decision trees 37
4. Classifying with probability theory: naïve Bayes 61
5. Logistic regression 83
6. Support vector machines 101
7. Improving classification with the AdaBoost meta-algorithm 129

Part 2 Forecasting Numeric Values with Regression

8. Predicting numeric values: regression 153
9. Tree-based regression 179

Part 3 Unsupervised Learning

10. Grouping unlabeled items using k-means clustering 207
11. Association analysis with the Apriori algorithm 224
12. Efficiently finding frequent itemsets with FP-growth 248
PART 4 ADDITIONAL TOOLS ...267

13 ■ Using principal component analysis to simplify data 269

14 ■ Simplifying data with the singular value decomposition 280

15 ■ Big data and MapReduce 299
PART 1 CLASSIFICATION

Machine learning basics 3

1.1 What is machine learning? 5
 Sensors and the data deluge 6 • Machine learning will be more
 important in the future 7

1.2 Key terminology 7

1.3 Key tasks of machine learning 10

1.4 How to choose the right algorithm 11

1.5 Steps in developing a machine learning application 11

1.6 Why Python? 13
 Executable pseudo-code 13 • Python is popular 13 • What Python
 has that other languages don’t have 14 • Drawbacks 14

1.7 Getting started with the NumPy library 15

1.8 Summary 17
Classifying with k-Nearest Neighbors 18

2.1 Classifying with distance measurements 19
 Prepare: importing data with Python 21 • Putting the kNN classification algorithm into action 23 • How to test a classifier 24

2.2 Example: improving matches from a dating site with kNN 24
 Prepare: parsing data from a text file 25 • Analyze: creating scatter plots with Matplotlib 27 • Prepare: normalizing numeric values 29 • Test: testing the classifier as a whole program 31 • Use: putting together a useful system 32

2.3 Example: a handwriting recognition system 33
 Prepare: converting images into test vectors 33 • Test: kNN on handwritten digits 35

2.4 Summary 36

Splitting datasets one feature at a time: decision trees 37

3.1 Tree construction 39
 Information gain 40 • Splitting the dataset 43 • Recursively building the tree 46

3.2 Plotting trees in Python with Matplotlib annotations 48
 Matplotlib annotations 49 • Constructing a tree of annotations 51

3.3 Testing and storing the classifier 56
 Test: using the tree for classification 56 • Use: persisting the decision tree 57

3.4 Example: using decision trees to predict contact lens type 57

3.5 Summary 59

Classifying with probability theory: naïve Bayes 61

4.1 Classifying with Bayesian decision theory 62

4.2 Conditional probability 63

4.3 Classifying with conditional probabilities 65

4.4 Document classification with naïve Bayes 65

4.5 Classifying text with Python 67
 Prepare: making word vectors from text 67 • Train: calculating probabilities from word vectors 69 • Test: modifying the classifier for real-world conditions 71 • Prepare: the bag-of-words document model 73

4.6 Example: classifying spam email with naïve Bayes 74
 Prepare: tokenizing text 74 • Test: cross validation with naïve Bayes 75
4.7 Example: using naïve Bayes to reveal local attitudes from personal ads 77
Collect: importing RSS feeds 78 • Analyze: displaying locally used words 80
4.8 Summary 82

5 Logistic regression 83
5.1 Classification with logistic regression and the sigmoid function: a tractable step function 84
5.2 Using optimization to find the best regression coefficients 86
Gradient ascent 86 • Train: using gradient ascent to find the best parameters 88 • Analyze: plotting the decision boundary 90
Train: stochastic gradient ascent 91
5.3 Example: estimating horse fatalities from colic 96
Prepare: dealing with missing values in the data 97 • Test: classifying with logistic regression 98
5.4 Summary 100

6 Support vector machines 101
6.1 Separating data with the maximum margin 102
6.2 Finding the maximum margin 104
Framing the optimization problem in terms of our classifier 104
Approaching SVMs with our general framework 106
6.3 Efficient optimization with the SMO algorithm 106
Platt’s SMO algorithm 106 • Solving small datasets with the simplified SMO 107
6.4 Speeding up optimization with the full Platt SMO 112
6.5 Using kernels for more complex data 118
Mapping data to higher dimensions with kernels 118 • The radial bias function as a kernel 119 • Using a kernel for testing 122
6.6 Example: revisiting handwriting classification 125
6.7 Summary 127

7 Improving classification with the AdaBoost meta-algorithm 129
7.1 Classifiers using multiple samples of the dataset 130
Building classifiers from randomly resampled data: bagging 130
Boosting 131
7.2 Train: improving the classifier by focusing on errors 131
CONTENTS

7.3 Creating a weak learner with a decision stump 133
7.4 Implementing the full AdaBoost algorithm 136
7.5 Test: classifying with AdaBoost 139
7.6 Example: AdaBoost on a difficult dataset 140
7.7 Classification imbalance 142

Alternative performance metrics: precision, recall, and ROC 143
Manipulating the classifier's decision with a cost function 147
Data sampling for dealing with classification imbalance 148

7.8 Summary 148

PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION 151

8 Predicting numeric values: regression 153

8.1 Finding best-fit lines with linear regression 154
8.2 Locally weighted linear regression 160
8.3 Example: predicting the age of an abalone 163
8.4 Shrinking coefficients to understand our data 164

Ridge regression 164 • The lasso 167 • Forward stagewise regression 167

8.5 The bias/variance tradeoff 170
8.6 Example: forecasting the price of LEGO sets 172

Collect: using the Google shopping API 173 • Train: building a model 174

8.7 Summary 177

9 Tree-based regression 179

9.1 Locally modeling complex data 180
9.2 Building trees with continuous and discrete features 181
9.3 Using CART for regression 184

Building the tree 184 • Executing the code 186

9.4 Tree pruning 188
Prepruning 188 • Postpruning 190

9.5 Model trees 192
9.6 Example: comparing tree methods to standard regression 195
9.7 Using Tkinter to create a GUI in Python 198

Building a GUI in Tkinter 199 • Interfacing Matplotlib and Tkinter 201

9.8 Summary 203
PART 3 UNSUPERVISED LEARNING ...205

10 Grouping unlabeled items using k-means clustering 207
10.1 The k-means clustering algorithm 208
10.2 Improving cluster performance with postprocessing 213
10.3 Bisecting k-means 214
10.4 Example: clustering points on a map 217
The Yahoo! PlaceFinder API 218 • Clustering geographic coordinates 220
10.5 Summary 223

11 Association analysis with the Apriori algorithm 224
11.1 Association analysis 225
11.2 The Apriori principle 226
11.3 Finding frequent itemsets with the Apriori algorithm 228
Generating candidate itemsets 229 • Putting together the full Apriori algorithm 231
11.4 Mining association rules from frequent item sets 233
11.5 Example: uncovering patterns in congressional voting 237
Collect: build a transaction data set of congressional voting records 238 • Test: association rules from congressional voting records 243
11.6 Example: finding similar features in poisonous mushrooms 245
11.7 Summary 246

12 Efficiently finding frequent itemsets with FP-growth 248
12.1 FP-trees: an efficient way to encode a dataset 249
12.2 Build an FP-tree 251
Creating the FP-tree data structure 251 • Constructing the FP-tree 252
12.3 Mining frequent items from an FP-tree 256
Extracting conditional pattern bases 257 • Creating conditional FP-trees 258
12.4 Example: finding co-occurring words in a Twitter feed 260
12.5 Example: mining a clickstream from a news site 264
12.6 Summary 265
PART 4 ADDITIONAL TOOLS .. 267

13 Using principal component analysis to simplify data 269
 13.1 Dimensionality reduction techniques 270
 13.2 Principal component analysis 271
 Moving the coordinate axes 271 • Performing PCA in NumPy 273
 13.3 Example: using PCA to reduce the dimensionality of semiconductor manufacturing data 275
 13.4 Summary 278

14 Simplifying data with the singular value decomposition 280
 14.1 Applications of the SVD 281
 Latent semantic indexing 281 • Recommendation systems 282
 14.2 Matrix factorization 283
 14.3 SVD in Python 284
 14.4 Collaborative filtering–based recommendation engines 286
 Measuring similarity 287 • Item-based or user-based similarity? 289
 Evaluating recommendation engines 289
 14.5 Example: a restaurant dish recommendation engine 290
 Recommending untasted dishes 290 • Improving recommendations with the SVD 292 • Challenges with building recommendation engines 295
 14.6 Example: image compression with the SVD 295
 14.7 Summary 298

15 Big data and MapReduce 299
 15.1 MapReduce: a framework for distributed computing 300
 15.2 Hadoop Streaming 302
 Distributed mean and variance mapper 303 • Distributed mean and variance reducer 304
 15.3 Running Hadoop jobs on Amazon Web Services 305
 Services available on AWS 305 • Getting started with Amazon Web Services 306 • Running a Hadoop job on EMR 307
 15.4 Machine learning in MapReduce 312
 15.5 Using mrjob to automate MapReduce in Python 313
 Using mrjob for seamless integration with EMR 313 • The anatomy of a MapReduce script in mrjob 314
15.6 Example: the Pegasos algorithm for distributed SVMs 316

The Pegasos algorithm 317 • Training: MapReduce support vector machines with mrjob 318

15.7 Do you really need MapReduce? 322

15.8 Summary 323

appendix A Getting started with Python 325
appendix B Linear algebra 335
appendix C Probability refresher 341
appendix D Resources 345
index 347