CONTENTS

Preface xxi
How to use this book xxv
Acknowledgements xxix
Dedication xxxi
Symbols used in this book xxxii
Some maths revision xxxiv

1 Why is my evil lecturer forcing me to learn statistics? 1
1.1 What will this chapter tell me? 1
1.2 What the hell am I doing here? I don’t belong here 2
1.3 Initial observation: finding something that needs explaining 4
1.4 Generating theories and testing them 4
1.5 Data collection 1: what to measure 7
1.5.1 Variables 7
1.5.2 Measurement error 11
1.5.3 Validity and reliability 12
1.6 Data collection 2: how to measure 13
1.6.1 Correlational research methods 13
1.6.2 Experimental research methods 13
1.6.3 Randomization 17
1.7 Analysing data 19
1.7.1 Frequency distributions 19
1.7.2 The centre of a distribution 21
1.7.3 The dispersion in a distribution 24
1.7.4 Using a frequency distribution to go beyond the data 25
1.7.5 Fitting statistical models to the data 28
What have I discovered about statistics? 29
Key terms that I’ve discovered 29
Smart Alex’s tasks 30
Further reading 31
Interesting real research 31

2 Everything you ever wanted to know about statistics (well, sort of) 32
2.1 What will this chapter tell me? 32
2.2 Building statistical models 33
2.3. Populations and samples 36
2.4. Simple statistical models 36
 2.4.1. The mean: a very simple statistical model 36
 2.4.2. Assessing the fit of the mean: sums of squares, variance
 and standard deviations 37
 2.4.3. Expressing the mean as a model 40
2.5. Going beyond the data 41
 2.5.1. The standard error 42
 2.5.2. Confidence intervals 43
2.6. Using statistical models to test research questions 49
 2.6.1. Test statistics 53
 2.6.2. One- and two-tailed tests 55
 2.6.3. Type I and Type II errors 56
 2.6.4. Effect sizes 57
 2.6.5. Statistical power 58
What have I discovered about statistics? 59
Key terms that I’ve discovered 60
Smart Alex’s tasks 60
Further reading 60
Interesting real research 61

3 The R environment 62

 3.1. What will this chapter tell me? 62
 3.2. Before you start 63
 3.2.1. The R-chitecture 63
 3.2.2. Pros and cons of R 64
 3.2.3. Downloading and installing R 65
 3.2.4. Versions of R 66
 3.3. Getting started 66
 3.3.1. The main windows in R 67
 3.3.2. Menus in R 67
 3.4. Using R 71
 3.4.1. Commands, objects and functions 71
 3.4.2. Using scripts 75
 3.4.3. The R workspace 76
 3.4.4. Setting a working directory 77
 3.4.5. Installing packages 78
 3.4.6. Getting help 80
 3.5. Getting data into R 81
 3.5.1. Creating variables 81
 3.5.2. Creating dataframes 81
 3.5.3. Calculating new variables from existing ones 83
 3.5.4. Organizing your data 85
 3.5.5. Missing values 92
 3.6. Entering data with R Commander 92
 3.6.1. Creating variables and entering data with R Commander 94
 3.6.2. Creating coding variables with R Commander 95
 3.7. Using other software to enter and edit data 99
 3.7.1. Importing data 97
 3.7.2. Importing SPSS data files directly 99
4 Exploring data with graphs

4.1. What will this chapter tell me? 116
4.2. The art of presenting data 117
4.2.1. Why do we need graphs 117
4.2.2. What makes a good graph? 117
4.2.3. Lies, damned lies, and ... erm ... graphs 120
4.3. Packages used in this chapter 121
4.4. Introducing ggplot2 121
4.4.1. The anatomy of a plot 121
4.4.2. Geometric objects (geoms) 123
4.4.3. Aesthetics 125
4.4.4. The anatomy of the ggplot() function 127
4.4.5. Stats and geoms 128
4.4.6. Avoiding overplotting 130
4.4.7. Saving graphs 131
4.4.8. Putting it all together: a quick tutorial 132
4.5. Graphing relationships: the scatterplot 136
4.5.1. Simple scatterplot 136
4.5.2. Adding a funky line 138
4.5.3. Grouped scatterplot 140
4.6. Histograms: a good way to spot obvious problems 142
4.7. Boxplots (box-whisker diagrams) 144
4.8. Density plots 148
4.9. Graphing means 149
4.9.1. Bar charts and error bars 149
4.9.2. Line graphs 155
4.10. Themes and options 161
What have I discovered about statistics? 163
R packages used in this chapter 163
R functions used in this chapter 164
Key terms that I’ve discovered 164
Smart Alex’s tasks 164
Further reading 164
Interesting real research 165
5 Exploring assumptions

5.1. What will this chapter tell me?
5.2. What are assumptions?
5.3. Assumptions of parametric data
5.4. Packages used in this chapter
5.5. The assumption of normality
 5.5.1. Oh no, it’s that pesky frequency distribution again: checking normality visually
 5.5.2. Quantifying normality with numbers
 5.5.3. Exploring groups of data
5.6. Testing whether a distribution is normal
 5.6.1. Doing the Shapiro–Wilk test in R
 5.6.2. Reporting the Shapiro–Wilk test
5.7. Testing for homogeneity of variance
 5.7.1. Levene’s test
 5.7.2. Reporting Levene’s test
 5.7.3. Hartley’s F_{max}: the variance ratio
5.8. Correcting problems in the data
 5.8.1. Dealing with outliers
 5.8.2. Dealing with non-normality and unequal variances
 5.8.3. Transforming the data using R
 5.8.4. When it all goes horribly wrong
What have I discovered about statistics?
R packages used in this chapter
R functions used in this chapter
Key terms that I’ve discovered
Smart Alex’s tasks
Further reading

6 Correlation

6.1. What will this chapter tell me?
6.2. Looking at relationships
6.3. How do we measure relationships?
 6.3.1. A detour into the murky world of covariance
 6.3.2. Standardization and the correlation coefficient
 6.3.3. The significance of the correlation coefficient
 6.3.4. Confidence intervals for r
 6.3.5. A word of warning about interpretation: causality
6.4. Data entry for correlation analysis
6.5. Bivariate correlation
 6.5.1. Packages for correlation analysis in R
 6.5.2. General procedure for correlations using R Commander
 6.5.3. General procedure for correlations using R
 6.5.4. Pearson’s correlation coefficient
 6.5.5. Spearman’s correlation coefficient
 6.5.6. Kendall’s tau (non-parametric)
 6.5.7. Bootstrapping correlations
 6.5.8. Biserial and point-biserial correlations
<table>
<thead>
<tr>
<th>6.6.</th>
<th>Partial correlation</th>
<th>234</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.1.</td>
<td>The theory behind part and partial correlation</td>
<td>234</td>
</tr>
<tr>
<td>6.6.2.</td>
<td>Partial correlation using R</td>
<td>235</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Semi-partial (or part) correlations</td>
<td>237</td>
</tr>
<tr>
<td>6.7.</td>
<td>Comparing correlations</td>
<td>238</td>
</tr>
<tr>
<td>6.7.1.</td>
<td>Comparing independent rs</td>
<td>238</td>
</tr>
<tr>
<td>6.7.2.</td>
<td>Comparing dependent rs</td>
<td>239</td>
</tr>
<tr>
<td>6.8.</td>
<td>Calculating the effect size</td>
<td>240</td>
</tr>
<tr>
<td>6.9.</td>
<td>How to report correlation coefficients</td>
<td>240</td>
</tr>
<tr>
<td>7.</td>
<td>Regression</td>
<td>245</td>
</tr>
<tr>
<td>7.1.</td>
<td>What will this chapter tell me?</td>
<td>245</td>
</tr>
<tr>
<td>7.2.</td>
<td>An introduction to regression</td>
<td>246</td>
</tr>
<tr>
<td>7.2.1.</td>
<td>Some important information about straight lines</td>
<td>247</td>
</tr>
<tr>
<td>7.2.2.</td>
<td>The method of least squares</td>
<td>248</td>
</tr>
<tr>
<td>7.2.3.</td>
<td>Assessing the goodness of fit: sums of squares, R and R^2</td>
<td>249</td>
</tr>
<tr>
<td>7.2.4.</td>
<td>Assessing individual predictors</td>
<td>252</td>
</tr>
<tr>
<td>7.3.</td>
<td>Packages used in this chapter</td>
<td>253</td>
</tr>
<tr>
<td>7.4.</td>
<td>General procedure for regression in R</td>
<td>254</td>
</tr>
<tr>
<td>7.4.1.</td>
<td>Doing simple regression using R Commander</td>
<td>254</td>
</tr>
<tr>
<td>7.4.2.</td>
<td>Regression in R</td>
<td>255</td>
</tr>
<tr>
<td>7.5.</td>
<td>Interpreting a simple regression</td>
<td>257</td>
</tr>
<tr>
<td>7.5.1.</td>
<td>Overall fit of the object model</td>
<td>258</td>
</tr>
<tr>
<td>7.5.2.</td>
<td>Model parameters</td>
<td>259</td>
</tr>
<tr>
<td>7.5.3.</td>
<td>Using the model</td>
<td>260</td>
</tr>
<tr>
<td>7.6.</td>
<td>Multiple regression: the basics</td>
<td>261</td>
</tr>
<tr>
<td>7.6.1.</td>
<td>An example of a multiple regression model</td>
<td>261</td>
</tr>
<tr>
<td>7.6.2.</td>
<td>Sums of squares, R and R^2</td>
<td>262</td>
</tr>
<tr>
<td>7.6.3.</td>
<td>Parsimony-adjusted measures of fit</td>
<td>263</td>
</tr>
<tr>
<td>7.6.4.</td>
<td>Methods of regression</td>
<td>263</td>
</tr>
<tr>
<td>7.7.</td>
<td>How accurate is my regression model?</td>
<td>266</td>
</tr>
<tr>
<td>7.7.1.</td>
<td>Assessing the regression model I: diagnostics</td>
<td>266</td>
</tr>
<tr>
<td>7.7.2.</td>
<td>Assessing the regression model II: generalization</td>
<td>271</td>
</tr>
<tr>
<td>7.8.</td>
<td>How to do multiple regression using R Commander and R</td>
<td>276</td>
</tr>
<tr>
<td>7.8.1.</td>
<td>Some things to think about before the analysis</td>
<td>276</td>
</tr>
<tr>
<td>7.8.2.</td>
<td>Multiple regression: running the basic model</td>
<td>277</td>
</tr>
<tr>
<td>7.8.3.</td>
<td>Interpreting the basic multiple regression</td>
<td>280</td>
</tr>
<tr>
<td>7.8.4.</td>
<td>Comparing models</td>
<td>284</td>
</tr>
<tr>
<td>7.9.</td>
<td>Testing the accuracy of your regression model</td>
<td>287</td>
</tr>
<tr>
<td>7.9.1.</td>
<td>Diagnostic tests using R Commander</td>
<td>287</td>
</tr>
<tr>
<td>7.9.2.</td>
<td>Outliers and influential cases</td>
<td>288</td>
</tr>
</tbody>
</table>
7.9.3. Assessing the assumption of independence
7.9.4. Assessing the assumption of no multicollinearity
7.9.5. Checking assumptions about the residuals
7.9.6. What if I violate an assumption?
7.10. Robust regression: bootstrapping
7.11. How to report multiple regression
7.12. Categorical predictors and multiple regression
 7.12.1. Dummy coding
 7.12.2. Regression with dummy variables
What have I discovered about statistics?
R packages used in this chapter
R functions used in this chapter
Key terms that I've discovered
Smart Alex's tasks
Further reading
Interesting real research

8 Logistic regression
 8.1. What will this chapter tell me?
 8.2. Background to logistic regression
 8.3. What are the principles behind logistic regression?
 8.3.1. Assessing the model: the log-likelihood statistic
 8.3.2. Assessing the model: the deviance statistic
 8.3.3. Assessing the model: R and R^2
 8.3.4. Assessing the model: information criteria
 8.3.5. Assessing the contribution of predictors: the z-statistic
 8.3.6. The odds ratio
 8.3.7. Methods of logistic regression
 8.4. Assumptions and things that can go wrong
 8.4.1. Assumptions
 8.4.2. Incomplete information from the predictors
 8.4.3. Complete separation
 8.5. Packages used in this chapter
 8.6. Binary logistic regression: an example that will make you feel eel
 8.6.1. Preparing the data
 8.6.2. The main logistic regression analysis
 8.6.3. Basic logistic regression analysis using R
 8.6.4. Interpreting a basic logistic regression
 8.6.5. Model 1: Intervention only
 8.6.6. Model 2: Intervention and Duration as predictors
 8.6.7. Casewise diagnostics in logistic regression
 8.6.8. Calculating the effect size
 8.7. How to report logistic regression
 8.8. Testing assumptions: another example
 8.8.1. Testing for multicollinearity
 8.8.2. Testing for linearity of the logit
 8.9. Predicting several categories: multinomial logistic regression
 8.9.1. Running multinomial logistic regression in R
 8.9.2. Interpreting the multinomial logistic regression output
10.2.9. The F-ratio

10.3. Assumptions of ANOVA
10.3.1. Homogeneity of variance
10.3.2. Is ANOVA robust?

10.4. Planned contrasts
10.4.1. Choosing which contrasts to do
10.4.2. Defining contrasts using weights
10.4.3. Non-orthogonal comparisons
10.4.4. Standard contrasts
10.4.5. Polynomial contrasts: trend analysis

10.5. Post hoc procedures
10.5.1. Post hoc procedures and Type I (α) and Type II error rates
10.5.2. Post hoc procedures and violations of test assumptions
10.5.3. Summary of post hoc procedures

10.6. One-way ANOVA using R
10.6.1. Packages for one-way ANOVA in R
10.6.2. General procedure for one-way ANOVA
10.6.3. Entering data
10.6.4. One-way ANOVA using R Commander
10.6.5. Exploring the data
10.6.6. The main analysis
10.6.7. Planned contrasts using R
10.6.8. Post hoc tests using R

10.7. Calculating the effect size

10.8. Reporting results from one-way independent ANOVA

11 Analysis of covariance, ANCOVA (GLM 2)

11.1. What will this chapter tell me?
11.2. What is ANCOVA?
11.3. Assumptions and issues in ANCOVA
11.3.1. Independence of the covariate and treatment effect
11.3.2. Homogeneity of regression slopes
11.4. ANCOVA using R
11.4.1. Packages for ANCOVA in R
11.4.2. General procedure for ANCOVA
11.4.3. Entering data
11.4.4. ANCOVA using R Commander
11.4.5. Exploring the data
11.4.6. Are the predictor variable and covariate independent?
11.4.7. Fitting an ANCOVA model
11.4.8. Interpreting the main ANCOVA model
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.9.</td>
<td>Planned contrasts in ANCOVA</td>
<td>479</td>
</tr>
<tr>
<td>11.4.10.</td>
<td>Interpreting the covariate</td>
<td>480</td>
</tr>
<tr>
<td>11.4.11.</td>
<td>Post hoc tests in ANCOVA</td>
<td>481</td>
</tr>
<tr>
<td>11.4.12.</td>
<td>Plots in ANCOVA</td>
<td>482</td>
</tr>
<tr>
<td>11.4.13.</td>
<td>Some final remarks</td>
<td>482</td>
</tr>
<tr>
<td>11.4.14.</td>
<td>Testing for homogeneity of regression slopes</td>
<td>483</td>
</tr>
<tr>
<td>11.5.</td>
<td>Robust ANCOVA</td>
<td>484</td>
</tr>
<tr>
<td>11.6.</td>
<td>Calculating the effect size</td>
<td>491</td>
</tr>
<tr>
<td>11.7.</td>
<td>Reporting results</td>
<td>494</td>
</tr>
</tbody>
</table>

Contents

11.4.9. Planned contrasts in ANCOVA
11.4.10. Interpreting the covariate
11.4.11. Post hoc tests in ANCOVA
11.4.12. Plots in ANCOVA
11.4.13. Some final remarks
11.5. Robust ANCOVA
11.6. Calculating the effect size
11.7. Reporting results

What have I discovered about statistics?

R packages used in this chapter
R functions used in this chapter
Key terms that I've discovered
Smart Alex's tasks
Further reading
Interesting real research

12 Factorial ANOVA (GLM 3) 498

12.1. What will this chapter tell me? 498
12.2. Theory of factorial ANOVA (independent design) 499
12.2.1. Factorial designs 499
12.3. Factorial ANOVA as regression 501
12.3.1. An example with two independent variables 501
12.3.2. Extending the regression model 501
12.4. Two-way ANOVA: behind the scenes 505
12.4.1. Total sums of squares (SS_T) 506
12.4.2. The model sum of squares (SS_M) 507
12.4.3. The residual sum of squares (SS_R) 510
12.4.4. The F-ratios 511
12.5. Factorial ANOVA using R 511
12.5.1. Packages for factorial ANOVA in R 511
12.5.2. General procedure for factorial ANOVA 512
12.5.3. Factorial ANOVA using R Commander 512
12.5.4. Entering the data 513
12.5.5. Exploring the data 516
12.5.6. Choosing contrasts 518
12.5.7. Fitting a factorial ANOVA model 520
12.5.8. Interpreting factorial ANOVA 520
12.5.9. Interpreting contrasts 524
12.5.10. Simple effects analysis 525
12.5.11. Post hoc analysis 528
12.5.12. Overall conclusions 530
12.5.13. Plots in factorial ANOVA 530
12.6. Interpreting interaction graphs 530
12.7. Robust factorial ANOVA 534
12.8. Calculating effect sizes 542
12.9. Reporting the results of two-way ANOVA 544

What have I discovered about statistics?

13 Repeated-measures designs (GLM 4) 549

13.1. What will this chapter tell me? 549
13.2. Introduction to repeated-measures designs 550
 13.2.1. The assumption of sphericity 551
 13.2.2. How is sphericity measured? 551
 13.2.3. Assessing the severity of departures from sphericity 552
 13.2.4. What is the effect of violating the assumption of sphericity? 552
 13.2.5. What do you do if you violate sphericity? 554
13.3. Theory of one-way repeated-measures ANOVA 554
 13.3.1. The total sum of squares (SST) 557
 13.3.2. The within-participant sum of squares (SSw) 558
 13.3.3. The model sum of squares (SSM) 559
 13.3.4. The residual sum of squares (SSR) 560
 13.3.5. The mean squares 560
 13.3.6. The F-ratio 560
 13.3.7. The between-participant sum of squares 561
13.4. One-way repeated-measures designs using R 561
 13.4.1. Packages for repeated measures designs in R 561
 13.4.2. General procedure for repeated-measures designs 562
 13.4.3. Repeated-measures ANOVA using R Commander 563
 13.4.4. Entering the data 563
 13.4.5. Exploring the data 565
 13.4.6. Choosing contrasts 568
 13.4.7. Analysing repeated measures: two ways to skin a .dat 569
 13.4.8. Robust one-way repeated-measures ANOVA 576
13.5. Effect sizes for repeated-measures designs 580
13.6. Reporting one-way repeated-measures designs 581
13.7. Factorial repeated-measures designs 583
 13.7.1. Entering the data 584
 13.7.2. Exploring the data 586
 13.7.3. Setting contrasts 588
 13.7.4. Factorial repeated-measures ANOVA 589
 13.7.5. Factorial repeated-measures designs as a GLM 594
 13.7.6. Robust factorial repeated-measures ANOVA 599
13.8. Effect sizes for factorial repeated-measures designs 599
13.9. Reporting the results from factorial repeated-measures designs 600
 What have I discovered about statistics? 601
 R packages used in this chapter 602
 R functions used in this chapter 602
 Key terms that I've discovered 602
 Smart Alex's tasks 602
15.5. Comparing two related conditions: the Wilcoxon signed-rank test

15.5.1. Theory of the Wilcoxon signed-rank test

15.5.2. Running the analysis with R Commander

15.5.3. Running the analysis using R

15.5.4. Wilcoxon signed-rank test output

15.5.5. Calculating an effect size

15.5.6. Writing the results

15.6. Differences between several independent groups: the Kruskal–Wallis test

15.6.1. Theory of the Kruskal–Wallis test

15.6.2. Inputting data and provisional analysis

15.6.3. Doing the Kruskal–Wallis test using R Commander

15.6.4. Doing the Kruskal–Wallis test using R

15.6.5. Output from the Kruskal–Wallis test

15.6.6. Post hoc tests for the Kruskal–Wallis test

15.6.7. Testing for trends: the Jonckheere–Terpstra test

15.6.8. Calculating an effect size

15.6.9. Writing and interpreting the results

15.7. Differences between several related groups: Friedman’s ANOVA

15.7.1. Theory of Friedman’s ANOVA

15.7.2. Inputting data and provisional analysis

15.7.3. Doing Friedman’s ANOVA in R Commander

15.7.4. Friedman’s ANOVA using R

15.7.5. Output from Friedman’s ANOVA

15.7.6. Post hoc tests for Friedman’s ANOVA

15.7.7. Calculating an effect size

15.7.8. Writing and interpreting the results

What have I discovered about statistics?

R packages used in this chapter

R functions used in this chapter

Key terms that I’ve discovered

Smart Alex’s tasks

Further reading

Interesting real research

16 Multivariate analysis of variance (MANOVA)

16.1. What will this chapter tell me?

16.2. When to use MANOVA

16.3. Introduction: similarities to and differences from ANOVA

16.3.1. Words of warning

16.3.2. The example for this chapter

16.4. Theory of MANOVA

16.4.1. Introduction to matrices

16.4.2. Some important matrices and their functions

16.4.3. Calculating MANOVA by hand: a worked example

16.4.4. Principle of the MANOVA test statistic

16.5. Practical issues when conducting MANOVA

16.5.1. Assumptions and how to check them
16.5.2. Choosing a test statistic
16.5.3. Follow-up analysis
16.6. MANOVA using R
16.6.1. Packages for factorial ANOVA in R
16.6.2. General procedure for MANOVA
16.6.3. MANOVA using R Commander
16.6.4. Entering the data
16.6.5. Exploring the data
16.6.6. Setting contrasts
16.6.7. The MANOVA model
16.6.8. Follow-up analysis: univariate test statistics
16.6.9. Contrasts
16.7. Robust MANOVA
16.8. Reporting results from MANOVA
16.9. Following up MANOVA with discriminant analysis
16.10. Reporting results from discriminant analysis
16.11. Some final remarks
16.11.1. The final interpretation
16.11.2. Univariate ANOVA or discriminant analysis?

What have I discovered about statistics?
R packages used in this chapter
R functions used in this chapter
Key terms that I’ve discovered
Smart Alex’s tasks
Further reading
Interesting real research

17 Exploratory factor analysis
17.1. What will this chapter tell me?
17.2. When to use factor analysis
17.3. Factors
17.3.1. Graphical representation of factors
17.3.2. Mathematical representation of factors
17.3.3. Factor scores
17.3.4. Choosing a method
17.3.5. Communality
17.3.6. Factor analysis vs. principal components analysis
17.3.7. Theory behind principal components analysis
17.3.8. Factor extraction: eigenvalues and the scree plot
17.3.9. Improving interpretation: factor rotation
17.4. Research example
17.4.1. Sample size
17.4.2. Correlations between variables
17.4.3. The distribution of data
17.5. Running the analysis with R Commander
17.6. Running the analysis with R
17.6.1. Packages used in this chapter
17.6.2. Initial preparation and analysis
17.6.3. Factor extraction using R
17.6.4. Rotation
17.6.5. Factor scores
17.6.6. Summary
17.7. How to report factor analysis
17.8. Reliability analysis
 17.8.1. Measures of reliability
 17.8.2. Interpreting Cronbach’s α (some cautionary tales …)
 17.8.3. Reliability analysis with R Commander
 17.8.4. Reliability analysis using R
 17.8.5. Interpreting the output
17.9. Reporting reliability analysis
 What have I discovered about statistics?
 R packages used in this chapter
 R functions used in this chapter
 Key terms that I’ve discovered
 Smart Alex’s tasks
 Further reading
 Interesting real research

18 Categorical data

18.1. What will this chapter tell me?
18.2. Packages used in this chapter
18.3. Analysing categorical data
18.4. Theory of analysing categorical data
 18.4.1. Pearson’s chi-square test
 18.4.2. Fisher’s exact test
 18.4.3. The likelihood ratio
 18.4.4. Yates’s correction
18.5. Assumptions of the chi-square test
18.6. Doing the chi-square test using R
 18.6.1. Entering data: raw scores
 18.6.2. Entering data: the contingency table
 18.6.3. Running the analysis with R Commander
 18.6.4. Running the analysis using R
 18.6.5. Output from the Cross Table() function
 18.6.6. Breaking down a significant chi-square test with standardized residuals
 18.6.7. Calculating an effect size
 18.6.8. Reporting the results of chi-square
18.7. Several categorical variables: loglinear analysis
 18.7.1. Chi-square as regression
 18.7.2. Loglinear analysis
18.8. Assumptions in loglinear analysis
18.9. Loglinear analysis using R
 18.9.1. Initial considerations
 18.9.2. Loglinear analysis as a chi-square test
 18.9.3. Output from loglinear analysis as a chi-square test
18.9.4. Loglinear analysis
18.10. Following up loglinear analysis
18.11. Effect sizes in loglinear analysis
18.12. Reporting the results of loglinear analysis

What have I discovered about statistics?

R packages used in this chapter
R functions used in this chapter
Key terms that I’ve discovered
Smart Alex’s tasks
Further reading
Interesting real research

19 Multilevel linear models

19.1. What will this chapter tell me?
19.2. Hierarchical data
 19.2.1. The intraclass correlation
 19.2.2. Benefits of multilevel models
19.3. Theory of multilevel linear models
 19.3.1. An example
 19.3.2. Fixed and random coefficients
19.4. The multilevel model
 19.4.1. Assessing the fit and comparing multilevel models
 19.4.2. Types of covariance structures
19.5. Some practical issues
 19.5.1. Assumptions
 19.5.2. Sample size and power
 19.5.3. Centring variables
19.6. Multilevel modelling in R
 19.6.1. Packages for multilevel modelling in R
 19.6.2. Entering the data
 19.6.3. Picturing the data
 19.6.4. Ignoring the data structure: ANOVA
 19.6.5. Ignoring the data structure: ANCOVA
 19.6.6. Assessing the need for a multilevel model
 19.6.7. Adding in fixed effects
 19.6.8. Introducing random slopes
 19.6.9. Adding an interaction term to the model
19.7. Growth models
 19.7.1. Growth curves (polynomials)
 19.7.2. An example: the honeymoon period
 19.7.3. Restructuring the data
 19.7.4. Setting up the basic model
 19.7.5. Adding in time as a fixed effect
 19.7.6. Introducing random slopes
 19.7.7. Modelling the covariance structure
 19.7.8. Comparing models
 19.7.9. Adding higher-order polynomials
 19.7.10. Further analysis
19.8. How to report a multilevel model
 What have I discovered about statistics?
 R packages used in this chapter
 R functions used in this chapter
 Key terms that I’ve discovered
 Smart Alex’s tasks
 Further reading
 Interesting real research

Epilogue: life after discovering statistics
 Troubleshooting R
 Glossary
 Appendix
 A.1. Table of the standard normal distribution
 A.2. Critical values of the t-distribution
 A.3. Critical values of the F-distribution
 A.4. Critical values of the chi-square distribution

References
 Index
 Functions in R
 Packages in R